首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Analytical letters》2012,45(10):1593-1603
This article reports a new simple and sensitive method for the determination of folic acid by adsorptive stripping voltammetry. The method is based on the accumulation of folic acid at a bismuth film plated in situ on a glassy carbon substrate. In order to stabilize bismuth ions, sodium potassium tartrate was added to the supporting electrolyte. The bismuth film formation and folic acid accumulation conditions were optimized and measurements were carried without solution deaeration. The calibration graph was linear from 5 × 10?10 to 2 × 10?8 mole per liter with an accumulation time of 180 seconds with a limit of detection of 2 × 10?10 mole per liter. The relative standard deviation for 5 × 10?9 mole per liter of folic acid was 3.1 percent (n = 5). The method was successfully applied for determination of folic acid in pharmaceutical preparations.  相似文献   

2.
《Analytical letters》2012,45(12):1918-1929
A rapid, simple, and sensitive method for the determination of Rhodamine B in chili powder was established based on surface-enhanced Raman spectroscopy using citrate-coated silver nanoparticles as the substrate. This substrate was found to produce enhancement factors of 1.6 × 107 at 625 per centimeter. A portable Raman spectrometer was used allowing on-site measurements. The effects of the volume of silver nanoparticle solution, the volume of hydrochloric acid, the volume of Rhodamine B, and the mixing time were optimized. The linear dynamic range was from 0.2 to 20.0 micrograms per liter and the limit of detection was 0.08 microgram per liter. The method was applied to the determination of Rhodamine B in chili powder, with recoveries between 81.42 and 97.22 percent, and relative standard deviation values lower than 4.84 percent.  相似文献   

3.
《Analytical letters》2012,45(12):1842-1853
A biosensor was fabricated by incorporating laccase in a ZnO sol-gel with chitosan as a matrix for the determination of catechol. The ZnO nanoparticles were characterized by X-ray diffraction and atomic force microscopy. The conductivity of the chitosan/ZnO/glassy carbon electrode film was investigated by alternating current impedance. The biosensor was employed to monitor the reduction of catechol, and the peak current increased linearly with concentration between 1.0 × 10?6 and 1.0 × 10?4 mole per liter with a limit of detection of 2.9 × 10?7 mole per liter. The laccase biosensor exhibited good stability, reproducibility, and some selectivity.  相似文献   

4.
《Analytical letters》2012,45(15):2446-2462
A sensitive method for mercury speciation in biological samples is reported. A simple vapor generation apparatus was coupled to liquid chromatography and inductively coupled plasma–mass spectrometry (ICP–MS) to achieve a substantial increase in sensitivity. Mercury(II) and methylmercury were separated by reversed-phase chromatography as thiolate compounds with 2-mercaptoethanol. A short reverse phase column with an octylated stationary phase (75 × 4 millimeters) was used with a mobile phase containing 0.02 mole per liter ammonium acetate, 0.2 percent (v/v) 2-mercaptoethanol, and 1 percent methanol. The effluent was mixed with hydrochloric acid (0.06 mole per liter) containing platinum (40 micrograms per liter) as the internal standard and bismuth (30 micrograms per liter) as a modifying agent followed by sodium borohydride (0.016 mole per liter). The generated volatile species were introduced into the ICP–MS by conventional solution nebulization. In addition to the sensitivity enhancement induced by vapor generation, the addition of bismuth further increased the methylmercury signal with a reduced increase in the mercury(II) signal. As a result, comparable but unequal signals were achieved: the mercury(II) signal was approximately 1.6-fold higher than the methylmercury signal. Extraction with a hydrochloric acid-2-mercaptoethanol solution was used for sample preparation. The accuracy of determination was verified using two standard reference materials and an interlaboratory reference material based on barley grown hydroponically in mercury-contaminated solution. The method was employed for mercury speciation of plant samples from a polluted region.  相似文献   

5.
《Analytical letters》2012,45(14):2217-2222
A rapid and simple method for the determination of anionic surfactants based on an evanescent wave fiber optic was developed using ethyl violet. The sensor was prepared by removing the middle of the multimode fiber cladding. The optical signal from ethyl violet decreased with an increase in the sodium dodecyl sulfate concentration. The calibration curve was linear from 4 to 15 milligrams per liter with a limit of detection of 3.3 milligrams per liter. This simple fiber optic sensor requires a low volume of sample and does not employ extraction with organic solvents compared with conventional methods.  相似文献   

6.
《Analytical letters》2012,45(10):1726-1736
A label-free method for sensitive determination of potassium ions was developed. The most commonly studied thrombin-binding aptamer was used as the molecular probe and crystal violet was chosen as a fluorescence signal reporter. The fluorescence of crystal violet was significantly enhanced when the crystal violet solution was mixed with the single-stranded thrombin-binding aptamer. However, in the presence of potassium ions, due to the formation of potassium induced G-quadruplex structures, the fluorescence decreased. Potassium ions were determined using the change in fluorescence. The conformational transformation was investigated by circular dichroism, and interferences caused by sodium ions were studied. This label-free method offers a simple procedure that induces minimum effects on the G-quadruplex formation. Under the optimized conditions, the method exhibited a linear range from 30–420 µM for potassium ions with a detection limit of 6 µM.  相似文献   

7.
A novel method was developed for the determination of sugars such as glucose, fructose and lactose by column liquid chromatography coupled with chemiluminescence detection. The LC separation used a Kromasil NH2 column (250 × 4.6 mm, i.d.: 5 μm, pore size, 100 Å) with a mobile phase consisting of acetonitrile and water. The chemiluminescence detection was based on the enhancement effect of the selected sugars on the chemiluminescence intensity between luminol and [Cu(HIO6)2]5?, which was on-line electrogenerated by constant current electrolysis. The limits of detection for determination of glucose, fructose and lactose were 4, 3 and 20 μg mL?1, respectively. The proposed method has been successfully applied to the determination of glucose and fructose in grape samples and lactose in milk samples.  相似文献   

8.
A simple and sensitive spectrophotometric method for the determination of hydrogen peroxide, based on the increase in color intensity of dye on addition of surfactant, is described. Hydrogen peroxide is first reacted with potassium iodide in acidic medium, in presence of ammonium molybdate to liberate iodine. The liberated iodine oxidizes leucocrystal violet to crystal violet having maximum absorbance at 593 nm. The color of the dye intensifies with the addition of the surfactant, cetyl pyridinium chloride though the absorption maximum remains the same. Beer's law is obeyed in the range 0.05–0.45 µg of hydrogen peroxide per 25 mL of final solution (0.002–0.018 µg mL?1) with an excellent correlation coefficient (r = 0.9977). The proposed method has been successfully applied for the analysis of hydrogen peroxide in various food products and rainwater.  相似文献   

9.
We report on a microfluidic platform that integrates a winding microdroplet chip and a surface-enhanced Raman scattering (SERS) detection system for trace determination of crystal violet (CV). Colloidal silver was applied to generate SERS. Compared to the continuous flow microfluidic system, the microdroplet based detection described here effectively eliminates any memory effects. Effects of flow pattern, droplet size, surfactant, and position of detection were optimized. Under optimal conditions, there is a linear correlation between signal and the concentration of CV in the 10 nM to 800 nM range, with a correlation coefficient (R2) of 0.9967. The limit of detection in water is 3.6 nM.
Graph
A winding microdroplet chip based on SERS detection was developed for trace levels of crystal violet. Under optimal conditions,there is a good linear correlation in the 10 nM to 800 nM range with LOD is 3.6 nM.  相似文献   

10.
A simple, rapid and highly sensitive capillary ion chromatographic method for direct determination of iodide and thiocyanate is reported. Separation was achieved on a laboratory-made capillary column (100 mm × 0.32 mm i.d.) packed with silica gel, followed by modification with 20 mM hexadimethrine bromide. Sodium perchlorate?Cmethanol (95:5, v/v) was used as the eluent and analyte anions were detected at 225 nm. Iodate, bromate, nitrate, iodide and thiocyanate were eluted within 8 min, with relative standard deviations of the retention time, peak area and peak height smaller than 2.4%. Effects of the eluent composition on the retention behavior were also investigated. The limit of detection (S/N = 3) of iodide was 6.5 ??g L?1, whereas that of thiocyanate was 16.2 ??g L?1. The method was successfully applied to the rapid and direct determination of iodide in powdered milk and thiocyanate in human saliva without any pre-concentration. The modified column could be used for about 1 month (8 h operation per day) without loss of hexadimethrine bromide.  相似文献   

11.
《Analytical letters》2012,45(12):1930-1940
A simple integrated agarose microchip-based substrate is reported for surface enhanced Raman spectroscopy. The substrate was evaluated for the determination of sodium thiocyanate in milk. The limit of detection was 5 × 10?7 grams per milliliter. The microarray design allowed the synchronous processing of many samples. The reported procedure is green and practical for on-site determination of sodium thiocyanate in milk with potential for additional applications.  相似文献   

12.
A rapid and automated method was developed for the determination of bacterial contamination and using Escherichia coli as a model microorganism. The method involves the use of a sensor connected to a flow injection (FI) system. The sample is introduced through a flow injection system into a piezoelectric quartz crystal (PQC) flow-cell. The resulting change of the resonance frequency is related to the bacterial contamination in the sample. The parameters associated with the flow system and the conditions for introducing the sample culture were optimized. Calibration curves are linear in the range from 3.2?×?107 to 3.2?×?109 cfu per mL-1, with a correlation coefficient of 0.997. The reproducibility was between 3.1 and 7.6%, and the detection limit is 1.1?×?107 cfu per mL-1. The method allowed the determination of bacterial contamination in residual water and in samples of milk and chicken stock within 5 h, while the conventional plate count method requires 24 to 48 h. The results obtained by these two methods are in good agreement.
Figure
A rapid and automated method for the determination of bacterial growth contamination is proposed and Escherichia coli was used as a model microorganism. The methodology involves the use of a piezoelectric quartz crystal (PQC) sensor connected to a flow injection (FI) system. The sample was introduced through the FI system and the resonant frequency change of PQC is related to the bacterial contamination in the sample. The method allows the successful determination of bacteria in residual water and several food samples  相似文献   

13.
Simultaneous Determination of Ten Antibiotic Residues in Milk by UPLC   总被引:2,自引:0,他引:2  
An analytical method for rapid screening and quantitative determination of ten antibiotics (chloramphenicol, thiamphenicol, tetracycline, oxytetracycline, chlortetracycline, metacycline, doxycycline, cefoperazone, ceftriaxone and cefaclor) residues in milk was developed using ultra performance liquid chromatography with photodiode array detector. After extraction with McIIvaine buffer + methanol (8 + 2), the extract was cleaned up with solid-phase extraction cartridge. The conditions of sample extraction, cleaning and separation were optimized. The average spiked recoveries of milk samples were 52.1–68.0, 70.1–81.0 and 76.2–101.0% at spiked levels of 0.1, 0.5, 2.5 μg g?1, respectively with precisions of 3.3–15.9%. The limits of detection and quantification were 0.003–0.022 and 0.01–0.08 μg g?1, respectively. The proposed method has been applied to the determination of antibiotics in actual milk samples with satisfactory results.  相似文献   

14.
《Analytical letters》2012,45(14):2195-2207
Copper-doped zinc selenide quantum dots modified with mercaptopropionic acid were prepared. The fluorescence quenching of the quantum dots was directly proportional to sparfloxacin concentration. A novel method was established to determine sparfloxacin using the copper-doped zinc selenide quantum dots as fluorescent probes. The interaction between the quantum dots and sparfloxacin was investigated by fluorescence and absorption spectroscopies. A linear relationship was obtained between the quenched fluorescence and sparfloxacin concentration from 1 × 10?6 to 1.8 × 10?5 moles per liter in KH2PO4-Na2HPO4 buffer at pH 7.5 using copper-doped zinc selenide quantum dots at 2.9 × 10?6 moles per liter. The limit of detection for sparfloxacin was 2.4 × 10?9 moles per liter. The method was used for the determination of sparfloxacin in tablets and water with satisfactory results.  相似文献   

15.
A highly sensitive spectrophotometric method for the determination of nitrite in water and soil has been developed. The reaction of nitrite with acidified potassium iodide to liberate iodine which oxidizes leuco‐crystal violet (LCV) to form crystal violet having absorption maxima at 590 nm forms the bases of this method. In aqueous medium the system obeys Beer's law in the range of 0.1 to 1.0 μg per 25 mL (0.004–0.04 ppm), while in an extractive system the range is 0.025–0.25 μg in 100 mL (0.00025–0.0025 ppm). The molar absorptivity and Sandell's sensitivity were found to be 1.54 × 106 1 mol?1 cm?1 and 44 pg cm?2, respectively.  相似文献   

16.
A flow-injection method is proposed for the simultaneous catalytic determination of formaldehyde and methanol on the basis of the catalytic action of formaldehyde upon the redox reaction between crystal violet and potassium bromate in a phosphoric acid medium and on-line oxidization of methanol into formaldehyde using a lead dioxide solid-phase reactor. The indicator reaction is monitored spectrophotometrically by measuring the decrease in the absorbance of crystal violet at the maximum absorption wavelength of 610 nm. A technique based on three sampling loops with a single injection valve is developed. The flow-injection system produces a signal of main peak with two shoulders of the same height. The height of the shoulders corresponds to the formaldehyde concentration, and the height difference between the shoulders and the main peak corresponds to the methanol concentration. The detection limit is 0.1 μg/mL for formaldehyde and 1.0 μg/mL for methanol with the sampling rate of 10 samples per hour. The relative standard deviations for 11 replicate determinations of formaldehyde (1.0 μg/mL) and methanol (10 μg/mL) are 1.1 and 2.1%, respectively. The method has been successfully applied to the simultaneous determination of formaldehyde and methanol in some gas samples. The text was submitted by the authors in English.  相似文献   

17.
《Analytical letters》2012,45(16):2682-2690
This paper describes the development of a portable microfluidic chip based on a surface-enhanced Raman spectroscopy (SERS) sensor for crystal violet analysis. A Y-shape microfluidic chip with a staggered herringbone structure was designed to efficiently mix the analyte and SERS active silver colloid. The subsequent detection of the analyte was performed on the microfluidic chip by a portable Raman system. Compared with other methods, this sensor is easy to operate and is expected to have applications for rapid and sensitive on-site analysis. A good linear correlation over the concentration range of 10 to 750 nM of crystal violet with a correlation coefficient of 0.992 was obtained. The recovery was between 98.6% and 102.9% for crystal violet in river water with relative standard deviations between 2.43% and 4.26%.  相似文献   

18.
A rapid, simple, and efficient method using ultrasound-assisted emulsification microextraction combined with dispersive micro-solid phase extraction (USAE-D-µ-SPE) was developed for detection and quantification of three azole antifungals in milk samples by high-performance liquid chromatography diode array detector. In this study, mesoporous carbon, COU-2, was used as sorbent in USAE-D-µ-SPE for the extraction and preconcentration of analytes. Several important experimental parameters, including type of deproteinized solvents, desorption time, type of extraction solvents, volume of extraction solvent, extraction time, emulsification time, sample pH, salt addition, and mass of COU-2 sorbent, were optimized using spiked milk samples. Under the optimum extraction and detection conditions, three azole antifungals, namely ketoconazole, clotrimazole, and miconazole, were determined within 20 min, with good linearity of matrix-matched calibration in the range of 0.5–5000.0 µg L?1 with coefficient of determination, r 2 ≥ 0.9943. The method showed limits of detection and limits of quantification of all analytes in the range of 0.15–3.0 and 0.5–10.0 µg L?1, respectively. Good repeatability with RSDs <15% (n = 3) and satisfactory relative recoveries (83.3–111.1%) were obtained for spiked azole antifungal drugs in milk. The results reveal that the developed USAE-D-µ-SPE method was a simple, rapid, efficient, environmentally friendly, and practicable method for the determination of azole antifungals in milk samples.  相似文献   

19.
《Analytical letters》2012,45(7):1182-1189
A quantitative approach for the determination of aminocaproic acid in commercial injections based on Raman spectroscopy and chemometrics has been developed. The Raman spectra of aminocaproic acid injections were analyzed by chemometric models including classical least squares (CLS), partial least squares (PLS), principal component regression (PCR), and stepwise multiple linear regression (SMLR). To compare the quantitative ability of the models, two key parameters, difference value and root mean square error, were calculated. The results indicated that the SMLR method was more efficient than the other methods. The difference value of the SMLR method was 90.5% and the root mean square error was 2.08. Raman determinations agreed with results obtained with a standard titration method (p < 0.05). The recovery was (99.7 ± 0.58)% and the repeatability was (99.2 ± 0.67)% by the SMLR method. These results show that the chemometric modeling of Raman spectra is a specific, rapid, and convenient alternative to quantify aminocaproic acid in injections.  相似文献   

20.
《Analytical letters》2012,45(13):2002-2010
The direct mass spectrometric determination of highly concentrated analytes in human urine was demonstrated using extractive electrospray ionization without sample dilution or complex preparation. By increasing the distance between the extractive electrospray source and ion inlet of the mass spectrometer from 5 millimeters to 15 centimeters, the fraction of free analyte ions and charged microdroplets introduced into the mass spectrometer was substantially reduced. Consequently, detector saturation, instrument contamination, and space charge effects were greatly diminished for the analysis of highly concentrated samples. Under the optimized experimental conditions, pure aniline and creatinine (>1 millimolar) in human urine were directly characterized by extractive electrospray ionization without any pretreatment. The urinary creatinine concentrations from two adults were 424 ± 30 and 635 ± 32 micrograms per milliliter and were in good agreement with those obtained by a spectrophotometric method based on the Jaffe reaction. The results show that extractive electrospray ionization is suitable for the direct determination of highly concentrated analytes or even pure compounds, allowing rapid characterization of samples in the chemical industry and clinical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号