首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel enzyme electrodes based on synthetic hydrophilic latex matrices are described for the detection of glucose. Glucose oxidase was immobilised through micro-encapsulation, by the simple adsorption of enzyme–latex suspensions on the surface of a platinum electrode. Two latex films functionalised by a hydroxy or a gluconamide group were used. The response of these biosensors to glucose additions was measured by potentiostating the modified electrodes at 0.6 V/SCE in order to oxidise the hydrogen peroxide generated by the enzymatic oxidation of glucose in the presence of dioxygen. The response of such electrodes was evaluated as a function of film thickness and temperature. The sensitivity for a two-layer latex-based biosensor was found to be 38.78 mA M−1 cm−2 with a response time of 3–5 s. Moreover, a marked improvement of the thermal stability of the biosensor was observed. Only at temperatures higher than 65°C the enzyme started to be denatured and being inactive.  相似文献   

2.
《Analytical letters》2012,45(6):943-951
Abstract

A new fiber-optic probe for the determination of glucose is developed. Glucose oxidase is immobilized on a preactivated Immunodyne membrane by direct application of the enzymatic solution to one side of the membrane. The membrane is then placed around the common end of a bifurcated glass fiber optic bundle, and immersed in the sample cell which contains the glucose sample, peroxidase and a colorless dye. Glucose is quantified by the color change when the reaction takes place.  相似文献   

3.
Glucose and sucrose are simultaneously determined by using a glucose-sensing enzyme electrode combined with a cell that contains immobilized invertase. The electrode current changes linearly with time for several minutes from ca. 1 min after the addition of a glucose-sucrose mixture. The concentration of sucrose (60 μM-6 mM) is determined from the rate of current change in the linear region, and that of glucose (5 μM-1 mM) is determined by extrapolating the straight current-time line to t=0.45 min and by measuring the intercept on the vertical (current) axis at t=0.45 min. The relative standard deviations are 1.8% for glucose and 3.7% for sucrose (n=10). More than 20 food samples can be analysed in 1 h.  相似文献   

4.
《Analytical letters》2012,45(7):1165-1175
Abstract

An optical fibre probe based on glucose dehydrogenase immobilized on nylon was constructed. The probe was used to quantitate glucose through a measurement of the fluorescence of the NADH formed by the enzyme-catalyzed reduction of glucose in the presence of NAD. The probe response was reproducible and displayed good linearity in the concentration range of 1.1 to 11.0 mM glucose. The limit of detection was 0.6 mM glucose. The response was affected by pH and NAD concentration.  相似文献   

5.
A method for increasing the sensitivity of enzyme sensors based on biocatalytic accumulation of an intermediate product was investigated using a biospecific electrode consisting of an immobilized glucose dehydrogenase-lactate dehydrogenase-lactate monooxygenase membrane and an electrochemical oxygen probe. Addition of the analyte (glucose) and an excess of NAD+ to the background solution permits NADH to be biocatalytically preconcentrated in the enzyme membrane. When this reaction has approached equilibrium, the sensor signal is generated by injection of an excess of pyruvate, thus starting oxygen consumption catalysed by the sequential lactate dehydrogenase-lactate monooxygenase reaction. Glucose can be determined at concentrations between 10 and 100 μM. Compared with operation of the sensor without NADH preconcentration, the increase in the sensitivity to glucose is 18-fold in the current-time mode and 40-fold in the derivative current-time mode. The measuring regime permits interferences from the sample solution to be avoided.  相似文献   

6.
A flow system for the determination of d-glucose in undiluted whole blood, in which segmented sample injection and on-line dialysis are used to decrease the red cell volume fraction (haematrocrit) dependence, is described. Glucose is degraded enzymatically by means of immobilized glucose dehydrogenase. The nicotinamide coenzyme (NAD+) that is present in the solution is reduced in the enzymatic reaction and is reoxidized amperometically at 0 mV vs. Ag/AgCl on a graphite electrode, modified with phenoxazinium ion. The potential use of the system for clinical analysis is evaluated.  相似文献   

7.
《Analytical letters》2012,45(7-8):875-885
Abstract

Commercially available polyamide preactivated membranes for immunodiagnostic use were found suitable for the preparation of immobilized enzyme membranes adaptable to biosensors. Membranes with immobilized glucose oxidese as model enzyme, tested with a microprocessor-based device involving an enzymatic electrode, gave excellent results. The extremely simple and fast procedure allows anyone to prepare such bioactive membranes easily, possibly from his own enzyme preparation and within a few minutes set up a specific probe from commercially available sensors.  相似文献   

8.
《Analytical letters》2012,45(9):1407-1416
Abstract

Micro-enzyme electrode with high performance was fabricated on a micro-platinum electrode surface (diameter = 50 ~ 200 μm) by taking advantage of very huge surface of platinized platinum. Glucose oxidase was incorporated into the micropores of platinum particle by immersing a micro-platinized platinum electrode in a solution containing glucose oxidase. The micro-enzyme electrode for glucose demonstrated high performance such as high sensitivity (the least detectable limit : 5 × 10?7 M), fast responsiveness (100 % response : 3 sec), and accuracy (C.V. = 1.4 %) in the repeated determination of glucose.  相似文献   

9.
Glucose oxidase and catalase were immobilized via the Ugi reaction by means of cyclohexyl isocyanide and glutaraldehyde on a nylon net partially hydrolysed by hydrochloric acid. A specific enzyme sensor for D-glucose was made by fixing the nylon net with immobilized enzymes on the tip of a Clark-type oxygen sensor. For comparison purposes glucose oxidase and catalase were also co-immobilized in the absence of cyclohexyl isocyanide or only glucose oxidase was immobilized with and without cyclohexyl isocyanide. The prepared biosensors were characterized by the specific activity of glucose oxidase and its dependence on Ph and temperature and by the apparent Michaelis constant. The linear range of the biosensor response to the substrate concentration and the stability of the biosensor were determined. The long-term stabilities of the enzyme electrodes were compared and the advangtage of the developed method was demonstrated.  相似文献   

10.
《Analytical letters》2012,45(7):1143-1157
Abstract

A potentially implantable glucose biosensor for continuous monitoring of glucose levels in diabetic patients has been developed. The glucose biosensor is based on an amperometric oxygen electrode and Glucose Oxidase immobilized on carbon powder held in a form of a liquid suspension. The enzyme material can be replaced (the sensor recharged) without sensor disassembly. Glucose diffusion membranes from polycarbonate (PC) and from polytetrafluorethylene (PTFE) coated with silastic are used.

Sensors were evaluated continuously operating in phosphate buffer solution and in undiluted blood plasma at body temperature. Calibration curves of the sensors were periodically obtained. The sensors show stable performance during at least 1200 hours of operation without refilling of the enzyme. The PTFE membrane demonstrates high mechanical stability and is little effected by long-term operation in undiluted blood plasma.  相似文献   

11.
A microfluidic device was designed for amperometric determination of glucose by packing enzyme modified magnetic nanoparticles (MNPs) in its microchannel as an enzyme microreactor. Glucose oxidase was covalently attached to the surface of MNPs and localized in the microchannel by the help of an external magnetic field, leading to a tunable packing length. By changing the length of microreactor from 3 to 10 mm, the performance for glucose detection was optimized. The optimal linear range to glucose was from 25 μM to 15 mM with a detection limit of 11 μM at a length of 6 mm. The inter- and intra-day precisions for determination of 1.0 mM glucose were 0.8% and 1.7%, respectively, and the device-to-device reproducibility was 95.6%. The enzyme reactor remained its 81% activity after three-week storage. Due to the advantages of the device and fracture sampling technique, serum samples could be directly sampled through the fracture to achieve baseline separation from ascorbic acid, and proteins in the samples did not interfere with the detection. This work provided a promising way for pretreatment-free determination of glucose with low cost and excellent performance.  相似文献   

12.
A mediator-free glucose biosensor, termed a “third-generation biosensor,” was fabricated by immobilizing glucose oxidase (GOD) directly onto an oxidized boron-doped diamond (BDD) electrode. The surface of the oxidized BDD electrode possesses carboxyl groups (as shown by Raman spectra) which covalently cross-link with GOD through glutaraldehyde. Glucose was determined in the absence of a mediator used to transfer electrons between the electrode and enzyme. O2 has no effect on the electron transfer. The effects of experimental variables (applied potential, pH and cross-link time) were investigated in order to optimize the analytical performance of the amperometric detection method. The resulting biosensor exhibited fast amperometric response (less than 5 s) to glucose. The biosensor provided a linear response to glucose over the range 6.67×10−5 to 2×10−3 mol/L, with a detection limit of 2.31×10−5 mol/L. The lifetime, reproducibility and measurement repeatability were evaluated and satisfactory results were obtained.  相似文献   

13.
Glucose oxidase and glutamate oxidase lines, with typical width of 100 µm, were patterned on gold surfaces using a micro-dispensing system, by shooting 100 pl droplets of the corresponding enzyme solutions. The probe of a scanning electrochemical microscope (SECM) was then carefully positioned in the close proximity of the enzyme microstructure and poised to + 600 mV vs. Ag/AgCl, KCl 0.1 M. The H2O2, generated by the enzyme lines at different concentrations of glucose and glutamate in the surrounding solution, was sequentially monitored. Reproducible calibration curves for glucose and glutamate were obtained in one single experiment, proving that the combination of enzyme microstructures with SECM can provide a new way of achieving multianalyte detection.  相似文献   

14.
Glucose oxidase is immobilized onto a cellulose acetate membrane by glutaraldehyde linkage, and the membrane is used to cover the platinum electrode of a hydrogen peroxide sensor. A silanized polycarbonate membrane then covers the enzyme layer, and extends the linear calibration range to higher concentrations. The sensor, when incorporated into a flow-injection system, allows the determination of glucose at levels up to 1 M in soft drinks at a rate of 60 samples h?1 without sample dilution.  相似文献   

15.
《Analytical letters》2012,45(13):2275-2286
Abstract

A miniaturized thermal flow injection analysis biosensor has been coupled with a microdialysis probe for continuous subcutaneous glucose monitoring. Thermal biosensors are based on the principle of measuring the heat evolved during enzyme catalysed reactions. The system presented here consists of a miniaturized thermal biosensor with a small column containing coimmibolized glucose oxidase and catalase. The analysis buffer passes through the column at a flow rate of 60μL/min via an 1μL sample loop which is connected to a microdialysis probe.

Invitro results showed constant permeability of the probe and stability of the biosensor response during 24 hours. The response time was 85 sec giving a sample rate of 42 samples/hour.

During a load experiment, the glucose profile in a healthy volunteer was followed both in the subcutaneous tissue and blood using the microdialysis set-up proposed and comparing to blood glucose analyser.  相似文献   

16.
The aim of our present work was to develop a flow-through measuring apparatus for the determination of glucose content as model system in organic media and to compare the properties of the biosensor in organic and in aqueous solutions. Glucose oxidase (GOx) enzyme was immobilized on a natural protein membrane in a thin-layer enzyme cell, made of Teflon. The enzyme cell was connected into a flow injection analyzer (FIA) system with an amperometric detector. After optimizing the system the optimal flow rate was found at 0.8 ml min−1. In this case 50-60 samples were measured per hour. Adding ferrocene monocarboxylic acid (FMCA) to acetonitrile and to 2-propanol the optimal concentration was 5 mg l−1, while in the case of tetrabutylammonium-p-toluenesulfonate (TBATS) the optima were 2.7 and 8.0 mg l−1, respectively. With 6% buffer in acetonitrile containing FMCA more than 100 samples could be measured with the enzyme cell without any loss of activity. Measuring the hydrogen peroxide content produced in 2-propanol, the optimal concentration of buffer solution was at about 20%. The linear measuring range was 0-0.5 mM glucose in acetonitrile and 0-1.0 mM in 2-propanol.Glucose concentration of oily food samples was measured and compared with results obtained by the reference UV-photometric method. The correlation between the results measured by the two methods was very good with correlation coefficient (r) as high as 0.976.  相似文献   

17.
《Analytical letters》2012,45(7):525-540
Abstract

A sensitive method for the rapid determination of activities of soluble or immobilized enzymes, based on the electrochemical detection of hydrogen peroxide is described. Kinetic studies (Vmax and KM determinations) can be performed for all H2O2 generating enzymes (i.e. most of the oxidases) using an amperometric probe with a platinum anode at a fixed potential.

When associated with an immobilized glucose oxidase membrane, this sensor constitutes a glucose electrode and the activity of any hydrolase which releases glucose can be measured. There is no need for other auxiliary enzymes and no preincubation step is required. The possibility to carry out continuous analysis constitutes the main advantage of the described method.  相似文献   

18.
《Analytical letters》2012,45(11-12):2403-2411
Abstract

The modification of the surface of a platinum electrode by coating with a layer of a lipid mixture (asolectin), allows the relative measurement of hydrogen peroxide in the presence of interfering analytes. The lipid-enzyme complex and the platinum amperometric sensor offer greater selectivity and extended stability of the resulting probe. Measurements of glucose with the glucose oxidase enzyme and detection of the liberated hydrogen peroxide have been performed as a model system. Linear response of the signal versus glucose concentration was observed in the range of glucose concentration 1.10?3 ? 1.10?5 M with a response time of 20 s. The interferences of ascorbic acid, uric acid, iron (II), paracetamol, tyrosine and glutathion can be drastically minimized by appropriate adjustment of the amount of lipid contained in the biocatalyst layer.  相似文献   

19.
《Electroanalysis》2017,29(10):2300-2306
High‐performance biosensors were fabricated by efficiently transferring enzyme onto Pt electrode surfaces using a polydimethylsiloxane (PDMS) stamp. Polypyrrole and Nafion were coated first on the electrode surface to act as permselective films for exclusion of both anionic and cationic electrooxidizable interfering compounds. A chitosan film then was electrochemically deposited to serve as an adhesive layer for enzyme immobilization. Glucose oxidase (GOx) was selected as a model enzyme for construction of a glucose biosensor, and a mixture of GOx and bovine serum albumin was stamped onto the chitosan‐coated surface and subsequently crosslinked using glutaraldehyde vapor. For the optimized fabrication process, the biosensor exhibited excellent performance characteristics including a linear range up to 2 mM with sensitivity of 29.4±1.3 μA mM−1 cm−2 and detection limit of 4.3±1.7 μM (S/N=3) as well as a rapid response time of ∼2 s. In comparison to those previously described, this glucose biosensor exhibits an excellent combination of high sensitivity, low detection limit, rapid response time, and good selectivity. Thus, these results support the use of PDMS stamping as an effective enzyme deposition method for electroenzymatic biosensor fabrication, which may prove especially useful for the deposition of enzyme at selected sites on microelectrode array microprobes of the kind used for neuroscience research in vivo .  相似文献   

20.
《Analytical letters》2012,45(7):1347-1360
Abstract

S-layer ultrafiltration membranes (SUMs) with an active filtration layer composed of coherent two-dimensional, isoporous protein crystals (S-layers) have been used as matrix for immobilizing monolayers of enzymes. Since S-layers are formed by periodic repetition of identical protein subunits, functional groups are present on the crystalline array in an identical position and orientation. As a consequence monolayers of enzymes can bind in a geometrically well defined way. For the covalent immobilization of enzymes carboxyl groups from the S-layer protein were activated with carbodiimide and allowed to react with amino groups of the enzyme. SUMs were employed as a new type of immobilization matrix for the developement of an amperometric glucose sensor using glucose oxidase (GOD) as the biologically active component. Glucose oxidase covalently bound to the surface of the S-layer protein retained approximately 40% of its activity. The enzyme loaded SUMs were covered with a layer of gold or platinum to function as working electrodes. These sensors yielded high signals (150nA/mm2/mmol glucose), fast response times (10–30s) and a linearity range up to 12 mM glucose. The stability under working conditions was more than 48 hours. There was no loss in activity after a storage period of 6 month.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号