首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new composite electrode based on multiwall carbon nanotubes (MWCNT) and silicone‐rubber (SR) was developed and applied to the determination of propranolol in pharmaceutical formulations. The effect of using MWCNT/graphite mixtures in different proportions was also investigated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for electrochemical characterization of different electrode compositions. Propranolol was determined using MWCNT/SR 70 % (m/m) electrodes with linear dynamic ranges up to 7.0 µmol L?1 by differential pulse and up to 5.4 µmol L?1 by square wave voltammetry, with LODs of 0.12 and 0.078 µmol L?1, respectively. Analysis of commercial samples agreed with that obtained by the official spectrophotometric method. The electrode is mechanically robust and presented reproducible results and a long useful life.  相似文献   

2.
《Analytical letters》2012,45(5):850-862
A graphite silicone-rubber composite electrode (GSR) was used for the determination of propranolol in drug formulation. Cyclic voltammetry (CV) at the GSR presented an irreversible oxidation peak at + 0.8 V vs. SCE, in Britton Robinson (B-R) buffer pH 7.4. The quantitative determination was carried out using differential pulse voltammetry (DPV). Under optimized parameters a linear dynamic range from 5.0 to 80.6 µ mol L?1 with a detection limit of 1.1 µ mol L?1 was observed. A repeatability of 4.5 ± 0.1 µA (n = 10) peak current was found after 10 successive DPV voltammograms of propranolol in the same solution after surface renovations. Using the proposed electrode, propranolol was quantified in a pharmaceutical formulation with results that agreed within 95% confidence level (t-test) with those from an official method.  相似文献   

3.
This work describes the development of a biosensor for paracetamol (PAR) determination based on a glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes (MWCNT) and laccase enzyme (LAC), which was immobilized by means of covalent crosslinking using glutaraldehyde. Voltammetric investigations were carried out by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The biosensor was characterized by Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FT‐IR). The results showed that the use of MWCNT/LAC composite increased the sensor sensitivity, compared to bare glassy carbon electrode. Factors affecting the voltammetric signals such as pH, ionic strength, scan rate and interferents were assessed. Linear range, limit of detection (LOD) and limit of quantitation (LOQ) obtained were 10–320 μmol L?1, 7 μmol L?1 and 10 μmol L? 1, respectively. The developed biosensor was successfully applied to PAR determination in urine and pharmaceutical formulations samples, with recovery varying from 99.96 to 106.20 % in urine samples and a relative standard deviation less than 1.04 % for PAR determination in pharmaceutical formulations. Therefore, the MWCNT‐LAC/GCE exhibits excellent sensitivity and can be used to PAR determination as a viable alternative in clinical analyzes and quality control of pharmaceutical formulations, through a simple, fast and inexpensive methodology.  相似文献   

4.
A simple procedure for the simultaneous determination of acetaminophen (AC) and ascorbic acid (AA) by differential pulse voltammetry (DPV) using a carbon nanotube paste electrode exploiting measures in cetylpyridinium bromide (CPB) medium is described. Under the best instrumental parameters of DPV, optimized by means of factorial design, the calibration plots in the range 100.0–700.0 µmol L?1 (r=0.993) and 39.4–146.3 µmol L?1 (r=0.995) with limits of detection of 7.1 and 2.1 µmol L?1, were achieved for AA and AC, respectively. The developed method was successfully applied for the AC and AA determination in pharmaceutical formulations, whose accuracy was attested by comparison with HPLC method.  相似文献   

5.
A bare graphite-epoxy composite was evaluated as an electrode material in the determination of atenolol in natural water samples and pharmaceutical formulations for which the analyte was spiked. Using a DPV procedure, a linear response was observed in the 4.45–84.7?µmol?L?1 range with a LOD?=?2.23?µmol?L?1, without need of surface renewal between successive runs, and recoveries between 92.5 and 107.5% for pharmaceutical formulations. The results obtained from the proposed procedure agreed with HPLC results within a 95% confidence level. During the determination of atenolol in water samples, recoveries between 96.1 and 102.6% were found.  相似文献   

6.
The voltammetric behavior of two genotoxic nitro compounds (4‐nitrophenol and 5‐nitrobenzimidazole) has been investigated using direct current voltammetry (DCV) and differential pulse voltammetry (DPV) at a polished silver solid amalgam electrode (p‐AgSAE), a mercury meniscus modified silver solid amalgam electrode (m‐AgSAE), and a mercury film modified silver solid amalgam electrode (MF‐AgSAE). The optimum conditions have been evaluated for their determination in Britton‐Robinson buffer solutions. The limit of quantification (LQ) for 5‐nitrobenzimidazole at p‐AgSAE was 0.77 µmol L?1 (DCV) and 0.47 µmol L?1 (DPV), at m‐AgSAE it was 0.32 µmol L?1 (DCV) and 0.16 µmol L?1 (DPV), and at MF‐AgSAE it was 0.97 µmol L?1 (DCV) and 0.70 µmol L?1 (DPV). For 4‐nitrophenol at p‐AgSAE, LQ was 0.37 µmol L?1 (DCV) and 0.32 µmol L?1 (DPV), at m‐AgSAE it was 0.14 µmol L?1 (DCV) and 0.1 µmol L?1 (DPV), and at MF‐AgSAE, it was 0.87 µmol L?1 (DCV) and 0.37 µmol L?1 (DPV). Thorough comparative studies have shown that m‐AgSAE is the best sensor for voltammetric determination of the two model genotoxic compounds because it gives the lowest LQ, is easier to prepare, and its surface can be easily renewed both chemically (by new amalgamation) and/or electrochemically (by imposition of cleaning pulses). The practical applicability of the newly developed methods was verified on model samples of drinking water.  相似文献   

7.
《Analytical letters》2012,45(6):881-897
Abstract

The preparation and electrochemical characterization of a carbon composite electrode modified with copper(II)-resin as well as its behavior toward rutin were investigated using cyclic and linear sweep voltammetry. The best voltammetric response was observed for a composite composition of 20% (m/m) copper(II)-resin, 0.10 mol L?1 KNO3/10?6 mol L?1 HNO3 solution (pH 6.0) as the supporting electrolyte, and a scan rate of 50 mVs?1. A linear voltammetric response for rutin was obtained in the concentration range from 9.90 × 10?7 to 8.07 × 10?6 mol L?1, with a detection limit of 2.65 × 10?8 mol L?1. The proposed electrode was useful for the quality control and routine analysis of rutin in pharmaceutical formulations.  相似文献   

8.
In this work, an electrochemical sensor based on pyrolytic graphite electrode (PGE), cobalt phthalocyanine (CoPc) and multiwalled carbon nanotube (MWCNT) composite designed as PGE‐MWCNT/CoPc was developed and validated for pyridoxine (vitamin B6) determination employing Differential Pulse Voltammetry (DPV). The electrochemical behaviour of pyridoxine at the PGE‐MWCNT/CoPc has been evaluated and the charge transfer coefficient, α, and the charge transfer rate constant, κ, were calculated as 0.30 and 11.67±0.43 s?1, respectively, which indicates that, although this system is irreversible, it is viable kinetically to be used as a sensor. The optimized experimental conditions were pH 5.5 in 0.30 mol L?1 phosphate buffer. The linear range found was 10 to 400 μmol L?1 of pyridoxine, with r=0.9987. The limits of detection and quantification were 0.50 and 1.67 μmol L?1, respectively, showing the good sensitivity of the method. The method was successfully applied for the pyridoxine determination in real samples of pharmaceutical formulation with RSD% lower than 5 % indicating that it can be used for routine quality control pharmaceutical formulations containing pyridoxine. Furthermore, it has the advantages of a fast response, a low detection limit and low cost.  相似文献   

9.
A novel and sensitive electrochemical sensor was developed for the simultaneous determination of the butylated hydroxyanisole (BHA) and tert‐butylhydroquinone (TBHQ) antioxidants in biodiesel samples employing the differential pulse voltammetry (DPV). In this sense, a glassy carbon electrode (GCE) modified with copper (II) tetrasulfonated phthatocyanine immobilized on reduced graphene oxide (CuTSPc/rGO) allowed the detection of BHA and TBHQ at potentials lower than those observed at unmodified electrodes. The sensor was characterized by cyclic voltammetry (CV) and linear scan voltammetry (LSV). After optimization of the experimental parameters, the analytical curves for simultaneous determination of BHA and TBHQ by DPV technique demonstrated an excellent linear response from 0.1 to 500 µmol L?1 with detection limit of 0.045 µmol L?1 for TBHQ and 0.036 µmol L?1 for BHA. Finally, the proposed method was successfully applied in the simultaneous determination of BHA and TBHQ in six biodiesel samples, and the results obtained were found to be similar to those obtained using the HPLC method with agreement at 95 % confidence level.  相似文献   

10.
The present work describes the development of a selective and sensitive voltammetric sensor for simultaneous determination of catechol (CC) and hydroquinone (HQ), based on a glassy carbon (GC) electrode modified with manganese phthalocyanine azo‐macrocycle (MnPc) adsorbed on multiwalled carbon nanotubes (MWCNT). Scanning electron microscopy and scanning electrochemical microscopy were used to characterize the composite material (MnPc/MWCNT) on the glassy carbon electrode surface. The modified electrode showed excellent electrochemical activity towards the simultaneous oxidation and reduction of CC and HQ. On the MnPc/MWCNT/GC electrode, both CC and HQ can generate a pair of quasi‐reversible and well‐defined redox peaks. Under optimized experimental and operational conditions, the cathodic peak currents were linear over the range 1–600 µmol L?1 for both CC and HQ, with limits of detection of 0.095 and 0.041 µmol L?1, respectively. The anodic peak currents were also linear over the range 1–600 µmol L?1 for both CC and HQ, with limits of detection of 0.096 and 0.048 µmol L?1, respectively. The proposed method was effectively applied for the simultaneous detection of hydroquinone and catechol in water samples and the results were in agreement with those obtained by a comparative method described in the literature.  相似文献   

11.
The electrochemical reduction of carbamazepine in acetonitrile (ACN) and dimethylformamide (DMF) using a glassy carbon electrode and microelectrodes has been studied. The reduction process is consistent with an electrochemical‐chemical mechanism (EC) involving a two electron transfer followed by a first order reaction, as shown by the cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Half‐wave potential, number of electron transferred, diffusion coefficient and rate constant of the associated chemical reaction are reported. Limits of detection (LOD) for DPV are 0.92 and 0.76 µg mL?1 (3.89×10?6 mol L?1 and 3.21×10?6 mol L?1) in ACN and DMF, respectively. Precision (%RSD) and recovery (%) values when pharmaceutical compounds (200mg carbamazepine tablets) and spiked plasma samples were tested ranged from 1.09 to 9.04 % and % recoveries ranged from 96 to 104.1 %.  相似文献   

12.
Monolayers of 2-mercapto-5-methylbenzimidazole (MMB) were prepared on a polycrystalline gold electrode via a self-assembly process to produce a self-assembled monolayer. The resulting electrode was investigated by cyclic voltammetry and electrochemical impedance spectroscopy, and applied to the determination of chloramphenicol (CAP) in a pharmaceutical formulation using flow injection analysis along with amperometric detection. The amperometric cell was operated at ?0.75 V (vs Ag/AgCl) at a flow rate of 3 mL min?1. The method was applied to the determination of CAP in ophthalmic solutions, and its performance was compared to a previously validated HPLC method. The response to CAP is linear in the range from 0.050 to 1.000 µmol L?1 (r?=?0.9990), and the limit of detection is 44 µmol L?1.  相似文献   

13.
《Analytical letters》2012,45(10):1697-1711
This paper examines the electrochemical oxidation of terbinafine with the boron doped diamond and glassy carbon electrodes. The studies were performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square-wave voltammetry (SWV). The supporting electrolytes, solution pH, the range of potentials, and the scan rates were optimized. Terbinafine was irreversibly oxidized in all electrolytes, yielding well-defined peaks in the positive potential range. The peak potential shifted towards less positive values as the solution pH increased. Voltammetric determination of terbinafine was performed under the optimized conditions. Using the boron doped diamond electrode, a linear relationship between current and concentration was obtained between 5.44 × 10?7 and 5.18 and 10?6 mol/L with SWV and between 7.75 · 10?7 and 8.55 · 10?6 mol/L by DPV. At the glassy carbon electrode, a linear relationship between 7.75 · 10?7 and 8.55 · 10?6 mol/L was obtained by SWV and between 7.75 · 10?7 and 1.05 · 10?5 mol/L by DPV. The sensitivity, precision, and selectivity of the procedures were evaluated. In order to check the practical application of the developed methods, the concentration of terbinafine was determined in pharmaceutical preparations.  相似文献   

14.
《Analytical letters》2012,45(6):1083-1095
Abstract

A sensitive electrochemical DNA biosensor based on nano-ZnO/chitosan composite matrix for DNA hybridization detection was developed. The Nano-ZnO was synthesized by the hydrothermal method and dispersed in chitosan, which was used to fabricate the modification of the glassy carbon electrode (GCE) surface. The ZnO/chitosan-modified electrode exhibited good biocompatibility and excellent electrochemical conductivity. The hybridization detection was monitored with differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. The established biosensor can effectively discriminate complementary target sequence and two-base-mismatched sequence, with a detection limit of 1.09 × 10?11 mol L?1 of complementary target.  相似文献   

15.
A glassy carbon electrode modified with a ruthenium (III) hexacyanoferrate film was investigated for the determination of captopril in pharmaceutical formulations. The RuOHCF film was deposited on the surface of the electrode after applying 50 successive cycles and subsequent stabilization in a mixture of NaNO3 0.50 mol L?1+HCl 0.050 mol L?1 used as supporting electrolyte. The main processes responsible for the redox electrode response are attributed to the system RuII/RuIII/RuIV, and appeared at ?0.080, 0.86 and 1.01 V (vs. SCE). The redox process at ?0.080 V was selected for the determination of captopril in the present study, once it provided higher sensibility and occurs in a lower potential than the other ones which can prevent interferences. The experimental parameters used in the determination of the analyte, using differential pulse voltammetry were optimized: pulse amplitude: 50 mV, scan rate: 5 mV s?1 and potential window: ?0.5 to 0.2 V (vs. SCE). The analytical application of the sensor in real samples demonstrated a linear range between 0.060 and 0.80 µmol L?1 (r=0.998) with a detection limit of 0.047 µmol L?1. A mechanism based on co‐precipitation of captopril and the Ru (III) complex in the film is presented once the signal of the RuII/III redox couple decreases with increasing the analyte concentration. Recoveries of 99 to 100 % were achieved in pharmaceutical samples and the proposed procedure agreed with the HPLC official method within 95 % confidence level, according to the t‐Student test.  相似文献   

16.
A new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of multiwalled carbon nanotubes and Amberlite IR-120. The anodic stripping voltammograms depend, to a large extent, on the composition of the modified electrode and the preconcentration conditions. Under optimum conditions, the anodic peak current at around ?0.57 V is linearly related to the concentration of Pb(II) in the range from 9.6?×?10?8 to 1.7?×?10?6 mol L?1 (R?=?0.998). The detection limit is 2.1?×?10?8 mol L?1, and the relative standard deviation (RSD) at 0.24?×?10?6 mol L?1 is 1.7% (n?=?6). The modified electrode was applied to the determination of Pb(II) using the standard addition method; the results showed average relative recoveries of 95% for the samples analysed.
Figure
A new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of MWCNT and Amberlite IR-120. The method showed a good linearity for 9.6?×?10?8 - 1.7?×?10?6 mol L?1 and detection limit of 2.1?×?10?8 mol L?1.  相似文献   

17.
A novel platform for electroanalysis of isoniazid based on graphene-functionalized multi-walled carbon nanotube as support for iron phthalocyanine (FePc/f-MWCNT) has been developed. The FePc/f-MWCNT composite has been dropped on glassy carbon forming FePc/f-MWCNT/GC electrode, which is sensible for isoniazid, decreasing substantially its oxidation potential to +200 mV vs Ag/AgCl. Electrochemical and electroanalytical properties of the FePc/f-MWCNT/GC-modified electrode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electrochemical microscopy, and amperometry. The sensor presents better performance in 0.1 mol L?1 phosphate buffer at pH 7.4. Under optimized conditions, a linear response range from 5 to 476 μmol L?1 was obtained with a limit of detection and sensitivity of 0.56 μmol L?1 and 0.023 μA L μmol?1, respectively. The relative standard deviation for 10 determinations of 100 μmol L?1 isoniazid was 2.5%. The sensor was successfully applied for isoniazid selective determination in simulated body fluids.  相似文献   

18.
《Analytical letters》2012,45(6):1046-1054
The determination of sildenafil citrate using differential pulse voltammetry and a cathodically pre-treated boron-doped diamond electrode is described. The obtained analytical curve is linear in the sildenafil concentration range 7.3 × 10?7 ? 7.3 × 10?6 mol L?1 in a 0.1 mol L?1 H2SO4, with a detection limit of 6.4 × 10?7 mol L?1. The proposed method, which is fast and simple to carry out, was successfully applied in the determination of sildenafil citrate in Viagra® pharmaceutical formulations, with results in close agreement (at 95% confidence level) with those obtained using a comparative HPLC method.  相似文献   

19.
《Analytical letters》2012,45(10):1867-1877
Abstract

A bare graphite-polyurethane composite was evaluated as an amperometric detector in the flow injection determination of atenolol in pharmaceutical formulations. Using a flow injection analysis (FIA) procedure, a linear analytical curve was observed in the 0.2–3.0 mmol L?1 range with a minimum detectable net concentration limit of detection (LOD = 18.1 µmol L?1 and 90 determinations h?1. Interferences from propranolol and furosemide were observed but not from the other components of the tablet. Thus, it was possible to determine atenolol in tablets without interference and with results that agreed with high performance liquid chromatography (HPLC) procedure with a 95% confidence level in a fast and accurate procedure.  相似文献   

20.
《Analytical letters》2012,45(15):2794-2804
Abstract

The reduction of luvastatin (FLV) at a hanging mercury-drop electrode (HMDE) was studied by square-wave adsorptive-stripping voltammetry (SWAdSV). FLV can be accumulated and reduced at the electrode, with a maximum peak current intensity at a potential of approximately ?1.26 V vs. AgCl/Ag, in an aqueous electrolyte solution of pH 5.25. The method shows linearity between peak current intensity and FLV concentration between 1.0 × 10?8 and 2.7 × 10?6 mol L?1. Limits of detection (LOD) and quantification (LOQ) were found to be 9.9 × 10?9 mol L?1 and 3.3 × 10?8 mol L?1, respectively.

Furthermore, FLV oxidation at a glassy carbon electrode surface was used for its hydrodynamic monitoring by amperometric detection in a flow-injection system. The amperometric signal was linear with FLV concentration over the range 1.0 × 10?6 to 1.0 × 10?5 mol L?1, with an LOD of 2.4 × 10?7 mol L?1 and an LOQ of 8.0 × 10?7 mol L?1. A sample rate of 50 injections per hour was achieved.

Both methods were validated and showed to be precise and accurate, being satisfactorily applied to the determination of FLV in a commercial pharmaceutical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号