首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(16):2665-2682
Abstract

The oxidation of theophylline was studied at a carbon paste electrode in the presence of cetyltrimethyl ammonium bromide by cyclic and differential pulse voltammetry. The results indicated that the electrochemical responses of theophylline are apparently improved by cetyltrimethyl ammonium bromide, due to the enhanced accumulation of theophylline at carbon paste electrode surface. Under optimal conditions the peak current was proportional to theophylline concentration in the range of 8.0 × 10?7 to 2.0 × 10?4 M with a detection limit of 1.85 × 10?7 M by differential pulse voltammetry. The proposed method was applied to the determination of theophylline in tablet and urine samples.  相似文献   

2.
《Analytical letters》2012,45(6):977-991
Abstract

The oxidative behavior of pentoxifylline was studied at a glassy carbon electrode in phosphate buffer solutions using cyclic and differential-pulse voltammetry. The oxidation process was shown to be irreversible over the pH range (3.0–9.0) and was diffusion controlled. The possible mechanism of the oxidation of pentoxifylline was investigated by means of cyclic voltammetry and UV-Vis spectroscopy. An analytical method was developed for the determination of pentoxifylline in phosphate buffer solution at pH 3.0 as a supporting electrolyte. The anodic peak current varied linearly with pentoxifylline concentration in the range 2.0 × 10?8 M to 6.0 × 10?7 M of pentoxifylline with a limit of detection (LOD) of 4.42 × 10?10 M. The proposed method was applied to the determination of pentoxifylline in pure and pharmaceutical formulations.  相似文献   

3.
《Analytical letters》2012,45(8):1610-1621
Abstract

Cobalt hexacyanoferrate (CoHCF) film was formed on multiwalled carbon nanotubes (MWNTs) modified gold electrode by electrodeposition from 0.5 M KCl solution containing CoCl2 and K3Fe(CN)6. The electrochemical behavior and the electrocatalytic property of the modified electrode were investigated. Compared with CoHCF/gold electrode, the CoHCF/MWNTs/gold electrode exhibits greatly improved stability and enhanced electrocatalytic activity toward the oxidation of thiosulfate. A linear range from 5.0×10?5 to 6.5×10?3 M (r=0.9990) for thiosulfate detection at the CoHCF/MWNTs/gold electrode was obtained, with a detection limit of 2.0×10?5 M (S/N=3).  相似文献   

4.
ABSTRACT

In the present study, a simple, cheap and sensitive electrochemical method based on a cathodically pretreated boron-doped diamond (CPT-BDD) electrode is described for the detection of triclosan with the cationic surfactant (cetyltrimethylammonium bromide, CTAB) media. The oxidation of triclosan was irreversible and exhibited an adsorption controlled process. The sensitivity of the adsorptive stripping voltammetric measurements was significantly improved with addition of CTAB. Using square-wave stripping mode, a linear response was obtained for triclosan determination in Britton-Robinson buffer solution at pH 9.0 containing 2.5 × 10?4 M CTAB at around + 0.67 V (vs. Ag/AgCl) (after 30 s accumulation at open-circuit condition). The method could be used in the range of 0.01–1.0 μg mL?1 (3.5 × 10?8–3.5 × 10?6 M), with a detection limit of 0.0023 μg mL?1 (7.9 × 10?9 M). The feasibility of the proposed method for the determination of triclosan in water samples was checked in spiked tap water.  相似文献   

5.
《Analytical letters》2012,45(12):1913-1931
Abstract

A voltammetric study of the oxidation of fexofenadine HCl (FEXO) has been carried out at the glassy carbon electrode. The electrochemical oxidation of FEXO was investigated by cyclic, linear sweep, differential pulse (DPV), and square wave (SWV) voltammetry using glassy carbon electrode. The oxidation of FEXO was irreversible and exhibited diffusion‐controlled process depending on pH. The dependence of intensities of currents and potentials on pH, concentration, scan rate, nature of the buffer was investigated. Different parameters were tested to optimize the conditions for the determination of FEXO. For analytical purposes, a very well resolved diffusion‐controlled voltammetric peak was obtained in Britton‐Robinson buffer at pH 7.0 with 20% constant amount of methanol for DPV and SWV techniques. The linear response was obtained in supporting electrolyte in the ranges of 1.0×10?6–2.0×10?4 M with a detection limit of 6.6×10?9 M and 5.76×10?8 M and in serum samples in the ranges of 2.0×10?6–1.0×10?4 M with a detection limit of 8.08×10?8 M and 4.97×10?8 M for differential pulse and square wave voltammetric techniques, respectively. Only square wave voltammetric technique can be applied to the urine samples, and the linearity was obtained in the ranges of 2.0×10?6–1.0×10?4 M with a detection limit of 2.00×10?7 M. Based on this study, simple, rapid, selective and sensitive two voltammetric methods were developed for the determination of FEXO in dosage forms and biological fluids. For the precision and accuracy of the developed methods, recovery studies were used. The standard addition method was used for the recovery studies. No electroactive interferences were found in biological fluids from the endogenous substances and additives present in tablets.  相似文献   

6.
《Analytical letters》2012,45(15):2430-2443
Abstract

A highly sensitive method to determine of indium is proposed by adsorption stripping differential pulse cathodic voltammetry (AdSDPCV) method. The complex of indium ions with xylenol orange is analyzed based on the adsorption collection onto a hanging mercury drop electrode (HMDE). After accumulation of the complex at ?0.20 V vs. Ag/AgCl reference electrode, the potential is scanned in a negative direction from ?0.40 to ?0.75 V with the differential pulse method. Then, the reduction peak current of In(III)–XO complex is measured. The influence of chemical and instrumental variables was studied by factorial design analysis. Under optimum conditions and accumulation time of 60 s, linear dynamic range was 0.1–10 ng/ml (8.7 × 10?10 to 8.7 × 10?8 M) with a limit of detection of 0.03 ng/ml (2.6 × 10?10 M); at accumulation time of 5 min, linear dynamic range was 0.04–10 ng/ml (3.4 × 10?10 to 8.7 × 10?8 M) with a limit of detection of 0.013 ng/ml (1.1 × 10?10 M). The applicability of the method to analysis of real samples was assessed by the determination of indium in water, alloy, and jarosite (zinc ore) samples.  相似文献   

7.
A novel enzyme-free electrochemical sensor for H2O2 was fabricated by modifying an indium tin oxide (ITO) support with (3-aminopropyl) trimethoxysilane to yield an interface for the assembly of colloidal gold. Gold nanoparticles (AuNPs) were then immobilized on the substrate via self-assembly. Atomic force microscopy showed the presence of a monolayer of well-dispersed AuNPs with an average size of ~4 nm. The electrochemical behavior of the resultant AuNP/ITO-modified electrode and its response to hydrogen peroxide were studied by cyclic voltammetry. This non-enzymatic and mediator-free electrode exhibits a linear response in the range from 3.0?×?10?5 M to 1.0?×?10?3 M (M?=?mol?·?L?1) with a correlation coefficient of 0.999. The limit of detection is as low as 10 nM (for S/N?=?3). The sensor is stable, gives well reproducible results, and is deemed to represent a promising tool for electrochemical sensing.
Figure
AuNPs/ITO modified electrode prepared by self-assembly method exhibit good electrocatalytic activity towards enzyme-free detection H2O2. The linear range of typical electrode is between 3.0?×?10?5 M and 1.0?×?10?3 M with a correlation coefficient of 0.999 and the limit detection is down to 1.0?×?10?8 M.  相似文献   

8.
Enzyme-free amperometric ultrasensitive determination of hydrogen peroxide (H2O2) was investigated using a Prussian blue (PB) film-modified gold nanoparticles (AuNPs) graphite–wax composite electrode. A stable PB film was obtained on graphite surface through 2-aminoethanethiol (AET)-capped AuNPs by a simple approach. Field emission scanning electron microscope studies results in formation of PB nanoparticle in the size range of 60–80 nm. Surface modification of PB film on AET–AuNPs–GW composite electrode was confirmed by Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy studies. Highly sensitive determination of H2O2 at a peak potential of ?0.10 V (vs. SCE) in 0.1 M KCl PBS, pH?=?7.0) at a scan rate of 20 mVs?1 with a sensitivity of 23.58 μA/mM was observed with the modified electrode using cyclic voltammetry. The synergetic effect of PB film with AuNPs has resulted in a linear range of 0.05 to 7,800 μM with a detection limit of 0.015 μM for H2O2 detection with the present electrode. Chronoamperometric studies recorded for the successive additions of H2O2 with the modified electrode showed an excellent linearity (R 2?=?0.9932) in the range of 4.8?×?10?8 to 7.4?×?10?8 M with a limit of detection of 1.4?×?10?8 M. Selective determination of H2O2 in presence of various interferents was successfully demonstrated. Human urine samples and stain remover solutions were also investigated for H2O2 content.  相似文献   

9.
《Analytical letters》2012,45(4):727-738
Abstract

Several synthetic zeolites such as mazzite, mordenite, zeolite L, zeolite beta, and MCM-41 were tested as electrode modifiers in voltammetric determination of tryptophan. It was found that addition of zeolite beta to the carbon paste would generate the peak current of Trp because of its catalytic effect. The anodic peak currents were proportional to Trp concentrations in the range of 5.0 × 10?7 to 5.0 × 10?3 M. The detection limit was 1.0 × 10?7 M. The influence of several species, especially other amino acids, were tested. The proposed method was applied successfully to the determination of tryptophan in pharmaceutical formulations.  相似文献   

10.
《Analytical letters》2012,45(11):2013-2032
Abstract

The electrooxidative behavior and determination of opipramol, a tricyclic compound for therapy of anxious-depressive states and general anxiety disorder, were investigated at a glassy carbon electrode using cyclic, linear sweep, differential pulse and Osteryoung square wave voltammetric techniques. The oxidation of opipramol was irreversible and exhibited a diffusion controlled process dependent on pH using a glassy carbon electrode. The oxidation mechanism on a glassy carbon electrode is proposed and discussed. The anodic process can be attributed to the oxidation of azepine and piperazine rings. Different parameters were tested to optimize the conditions for the determination of opipramol. The dependence of current intensities and potentials on pH, concentration, scan rate, and nature of the buffer was investigated as detailed. Opipramol in pH 3.7 acetate buffer presents a well-defined anodic response at + 0.86 V according to studies of the proposed method. The determination of opipramol was in pH 3.7 acetate buffer, which allowed quantitation over the 2 × 10?6 to 2 × 10?4 M range in the supporting electrolyte, 2 × 10?6 to 6 × 10?5 M range in the spiked serum sample, and 2 × 10?6 to 1 × 10?4 M range in the urine sample, for both techniques. The proposed method was applied to commercial drageés and average percente recovery was in agreement with that obtained by spectrophotometric comparison methods. The method was extended to the in vitro determination of opipramol in spiked human serum and urine.  相似文献   

11.
《Analytical letters》2012,45(5):947-956
Abstract

A new electrochemical substrate for horseradish peroxidase, methyl red, is reported. In this reaction system, horseradish peroxidase can catalyze the redox reaction of methyl red and H2O2. Methyl red exhibits a sensitive voltammetric peak at?0.51 V vs. Ag/AgCl reference electrode, the decrease of the peak current of methyl red is in proportion to the concentration of horseradish peroxidase (HRP). The linear range for determination of horseradish peroxidase is 5.0×10?8~5.0×10?7 g mL?1 and the detection limit is 1.8×10?8 g mL?1. The relative standard deviation is 3.3% when 2.0×10?7 g mL?1 HRP was sequentially determined 11 times. A voltammetric enzyme‐linked immunoassay method for the determination of estriol was developed, based on this electrochemical system. The linear range for determination of estriol is 1.0~1000.0 ng mL?1, and the detection limit is 0.33 ng mL?1. The relative standard deviation for 11 parallel determinations with 200 ng mL?1 estriol is 4.8%. Some pregnancy serum samples were analyzed with satisfactory results.  相似文献   

12.
《Analytical letters》2012,45(9):1552-1563
The development and application of an L-glutamic acid functionalized graphene nanocomposite, modified glassy carbon electrode are reported for the determination of epinephrine. The properties of the nanocomposite were characterized by scanning electron microscopy, ultraviolet-visible absorption spectroscopy, infrared spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The modified electrode had high sensitivity and strongly catalytic activity for the detection of epinephrine. A linear relationship between the epinephrine concentration and the current response was obtained in the range of 1 × 10?7 M to 1 × 10?3 M by differential pulse voltammetry with a limit of detection of 3 × 10?8 M. The modified electrode was employed to determine epinephrine in urine with satisfactory results.  相似文献   

13.
《Analytical letters》2012,45(13):2045-2055
Abstract

A new method for determination of trace indium is proposed by the adsorption stripping voltammetry (ASV) using a Nafion‐modified glassy carbon electrode (NMGCE). This chemically modified electrode (CME) shows a better stability. A sensitive oxidation peak was observed, and the anodic peak potential is ca. ?0.548 V (vs. SCE). The influences of various experimental parameters on the current peak were completely studied. Under the optimized condition, the method has been applied to the determination of indium in water samples. There is a good linear relationship between the peak current (ip) and indium(III) concentration in the range of 1.0×10?9–1.0×10?7 mol/l, and the limit of detection is 7.5×10?10 mol/l.  相似文献   

14.
A sensitive and selective method for determination of mercury(II) with “4-(4-methylphenyl aminoisonitrosoacetyl)biphenyl (TKO)-modified pencil graphite electrode” was developed. All factors affecting determination process were optimized. Differential pulse voltammetry with 4-(4-methylphenyl aminoisonitrosoacetyl)biphenyl-modified electrode showed a linear response between 1.0 × 10?5 and 1.0 × 10?3 M (R 2 = 0.9994). The detection limit of this electrode was found as 5.85 × 10?7 M (S/N = 3). The effects of different cations on the determination of mercury(II) were investigated and found that modified electrode is highly selective. The developed method was applied for mercury determination in different water samples.  相似文献   

15.
《Analytical letters》2012,45(11):1783-1802
Abstract

Griseofulvin is an antifungal antibiotic used to treat various pathogenic mycotic diseases. The voltammetric behavior of griseofulvin at a hanging mercury drop electrode in Britton‐Robinson buffers of pH 2–11.5 was studied and discussed. A fully validated sensitive square‐wave adsorptive cathodic stripping voltammetric procedure was described for direct determination of bulk griseofulvin substance. The procedure was based on the reduction of the >C?O double bond of griseofulvin molecule following its preconcentration onto a hanging mercury drop electrode in a Britton‐Robinson buffer of pH 10. Limits of detection (LOD) and quantitation (LOQ) of 5.8×10?10 M and 1.93×10?9 M bulk griseofulvin were achieved, respectively. The proposed stripping voltammetric procedure was successfully applied to assay griseofulvin in tablets and in spiked human serum and urine samples. LOD of 8.65×10?10 M and 6.6×10?9 M and LOQ of 2.88×10?9 M and 2.2×10?8 M griseofulvin in spiked human serum and urine samples, respectively, were achieved.  相似文献   

16.
《Analytical letters》2012,45(13):2026-2040
Abstract

The potentiometric response characteristics of a new copper(II) ion-selective PVC membrane electrode based on erythromycin ethyl succinate (EES) as ionophore were investigated. The electrode exhibited a Nernstian response to Cu2+ ions over the activity range of 1.5 × 10?2 to 2.0 × 10?6 mol L?1 with a limit of detection of 6.3 × 10?7 mol L?1. Stable potentials were obtained in the pH range of 5.5–6.5. The potentiometric selectivity coefficients were calculated by using fixed interference method and revealed no important interferences except for Ag+. This electrode was successfully applied as an indicator electrode in determination of copper ions in real water samples.  相似文献   

17.
《Analytical letters》2012,45(17):3195-3207
Abstract

The use of square‐wave voltammetry in conjunction with a cathodically pretreated boron‐doped diamond electrode for the analytical determination of aspartame in dietary products is described. In this determination, the samples were analyzed without previous treatment in a 0.5 mol l?1 H2SO4 solution. A single oxidation peak at a potential of 1.6 V vs. Ag/AgCl (3.0 mol l?1 KCl) with the characteristics of an irreversible reaction was obtained. The analytical curve was linear in the aspartame concentration range 9.9×10?6 to 5.2×10?5 mol l?1 with a detection limit of 2.3×10?7 mol l?1. The relative standard deviation (n=5) obtained was smaller than 0.2% for the 1.0×10?4 mol l?1 aspartame solution. The proposed method was applied with success to the determination of aspartame in several dietary products and the results were similar to those obtained using an HPLC method at 95% confidence level.  相似文献   

18.
《Analytical letters》2012,45(13):2569-2579
Abstract

A method for determination of L‐dopa by the adsorption stripping voltammetry (ASV) using a multiwalled carbon nanotubes (MWNTs)–Nafion modified glassy carbon electrode (GMGCE) was proposed. This chemically modified electrode (CME) shows a better stability. A sensitive oxidation peak was observed and the anodic peak potential is ca. 0.374V (vs. SCE). The influences of various experimental parameters on the current peak were completely studied. Under the optimized condition, the method has been applied to the determination of L‐dopa in samples. There is a good linear relationship between the peak current (ip) and L‐dopa concentration in the range of 3.5×10?7~1.5×10?5 mol/L, with the limit of detection 5.0×10?8 mol/L.  相似文献   

19.
《Analytical letters》2012,45(4):595-606
A highly sensitive polyvinyl chloride (PVC) membrane electrode, based on copper(II)-bis(N-4-methylphenyl-salicyldenaminato) complex, (CuL2), as a carrier was reported for the determination of chromate ion. The influence of membrane composition, pH, and possible interfering anions on the response of the ion selective electrode was investigated. The sensor exhibited a Nernstian slope of 29.7 mV per decade when the chromate concentration was varied between 2.0 × 10?7–1.50 × 10?2 M in a wide pH range (6.0 to 9.0). The detection limit of the ion selective electrode was 9.2 × 10?8 M. The proposed sensor was used for at least 4 months without any considerable divergence in potential. It was applied as indicator electrode in potentiometric titration of chromate ion with Pb2+ and Tl+.  相似文献   

20.
《Analytical letters》2012,45(8):1335-1347
Abstract

A sequential injection method coupled to chemiluminescence detection was described for the determination of trace amount of histidine. The physical and chemical parameters depicting the system were studied to obtain optimum conditions. It was found that physical dispersion caused by the change of zone stacking sequence was significant factor influencing CL intensity for a rapid CL reaction. At optimized conditions, histidine can be determined in the linear range from 5.0 × 10?7to 1.0 × 10?3 M with a detection limit (3σ) of 2 × 10?7 M for 60 µl sample. The relative standard deviation (RSD) for eleven repeated measurements of 4 × 10?5 M histidine was 0.97%, and the sampling frequency was 80 h?1, and the recoveries were varied from 90.0 to 103.3%. The proposed method has been successfully applied to the determination of histidine in beer samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号