首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
A novel, simple and rapid method, termed dispersive liquid–liquid microextraction with solidification of floating organic drop coupled to high performance liquid chromatography, was developed for analysis of three phenolic oestrogens including diethylstilbestrol, dienestrol and hexestrol in human urine and water samples. The parameters of dispersive liquid–liquid microextraction with solidification of floating organic drop procedure including sample pH, type and volume of disperser solvent, and type and volume of extraction solvent were optimised. High performance liquid chromatography was applied for the phenolic oestrogens’ analysis. Under the optimum extraction and detection conditions, excellent analytical performances were attained. Good linear relationships (r ≥ 0.998) between peak area and concentration for diethylstilbestrol and dienestrol were optimised from 0.1 to 20 µg/mL, for hexestrol from 2 to 50 µg/mL. Method detection limits of 28.6–666.7 ng/mL were achieved. Satisfactory relative recoveries ranging from 72% to 122% were determined for urine, lake and tap water samples, with relative standard deviations (RSDs, n = 6) of 1.5–9.8%. The developed dispersive liquid–liquid microextraction with solidification of floating organic drop-high performance liquid chromatography method has a great potential in routine residual analysis of trace phenolic oestrogens in biological and water samples.  相似文献   

2.
Herein, a novel, fast, green and sensitive surfactant ion pair-switchable solvent dispersive liquid–liquid microextraction (SIP-SS-DLLME) method was developed for the preconcentration of phenazopyridine. Protonated triethylamine bicarbonate is synthesized by the reaction of triethylamine and CO2 in the presence of water. This protonated switchable solvent (soluble in water) easily converted to triethylamine which is insoluble in water. Aliquat 336 was used as an ion-pair agent in this method, which results in the increase of the phenazopyridine extraction into the switchable solvent. Variables affecting the performance of extraction were studied and optimized. The relative standard deviation (RSD) was 3.1% for five repeated determinations containing 20 µg/L of phenazopyridine. The linear range of the method for microextraction and determination of phenazopyridine was found to be 5–180 µg/L with a detection limit of 0.88 µg/L. The presented method was applied successfully for the determination of phenazopyridine in pharmaceutical and biological samples.  相似文献   

3.
This study reports the synthesis of water soluble iron(II) phthalocyanine and a facile method for spectrophotometric determination of Hg(II) in environmental water samples by ionic liquid based dispersive liquid–liquid microextraction (IL-DLLME). In the method, 1-heptyl-3-methylimidazolium hexafluorophosphate (250 µL) as extraction solvent, acetonitrile (750 µL) as dispersive solvent and Triton X-100 (200 µL) as anti-sticking agent were used. After the extraction of the Hg(II) complex (Hg(II):q-Fe(II)-Pc) into thin droplets of ionic liquid, the sample was centrifuged for 4 min at 2000 rpm. The upper aqueous phase was removed and the residue diluted to 250 µL with methanol and transferred to a 250 µL cell for spectrophotometric detection at 280 nm. The linear range of the method is 0.05–1 µg/mL. The limits of detection and quantification is 0.01 and 0.03 µg/mL, respectively. The RSD for the developed method was calculated as 0.78% at 0.50 µg/mL Hg(II).  相似文献   

4.
李贤波  赵嫚  李胜清  陈浩  沈菁 《色谱》2012,30(9):926-930
建立了快速(quick)、简单(easy)、便宜(cheap)、有效(effective)、可靠(rugged)和安全(safe)(QuEChERS)的分散液-液微萃取(DLLME)-气相色谱快速测定番茄中拟除虫菊酯类农药残留的方法。样品经乙腈提取,N-丙基乙二胺(PSA)净化,采用DLLME富集,用气相色谱法分析。考察了联苯菊酯、甲氰菊酯和氟氰菊酯在番茄中的残留测定,同时考察了萃取剂种类与体积、分散剂体积以及萃取时间等因素对萃取效率的影响,以40 μL氯仿为萃取剂,1000 μL乙腈为分散剂,萃取时间为60 s。结果表明: 3种拟除虫菊酯类农药在番茄中的检出限分别为0.5、0.5、0.3 μg/kg。在1、10和50 μg/kg添加水平下,联苯菊酯、甲氰菊酯和氟氰菊酯在番茄中的平均回收率分别为89%~109%、92.5%~105%和90%~108%,相对标准偏差分别为2.5%~7.6%、2.8%~5.7%、3.8%~9.1%。该方法简便、快速、安全、价格低廉,重现性好,可用于番茄中拟除虫菊酯类农药的快速检测。  相似文献   

5.
《Analytical letters》2012,45(15):2198-2209
Dispersive liquid-liquid microextraction (DLLME) is an attractive miniaturized technique that utilizes microliter volumes of extraction solvents. In this study, a DLLME technique was employed for the determination of four major trihalomethane (THM) compounds and analyzed using gas chromatography-electron capture detection. Optimization was conducted in terms of type and volume of disperser solvent, type and volume of extraction solvent, and addition of salt and extraction time. Optimized conditions employed methanol (0.25 mL) as the disperser solvent containing carbon disulfide (20 µL) as the extraction solvent. The linear range was 0.020–4.00 µg/L. Low limits of detection for the analytes were obtained in the range of 0.01 to 0.24 µg/L with enrichment factors ranging from 95–283. The relative recoveries of THMs from water samples at spiking level of 2 µg/L were in the range of 79.9 to 103.4%. This method was successfully applied to the determination of THM formation potential (THMFP) in river water samples. It was found that the concentration of THMFP in three Malaysian rivers were below the maximum permissible limits of World Health Organization (WHO).  相似文献   

6.
In this work, a simple, fast, sensitive, and environmentally friendly method was developed for preconcentration and quantitative measurement of bisphenol A in water samples using gas chromatography with mass spectrometry. The preconcentration approach, namely biosorption‐based dispersive liquid‐liquid microextraction with extractant removal by magnetic nanoparticles was performed based on the formation of microdroplet of rhamnolipid biosurfactant throughout the aqueous samples, which accelerates the mass transfer process between the extraction solvent and sample solution. The process is then followed by the application of magnetic nanoparticles for easy retrieval of the analyte‐containing extraction solvent. Several important variables were optimized comprehensively including type of disperser solvent and desorption solvent, rhamnolipid concentration, volume of disperser solvent, amount of magnetic nanoparticles, extraction time, desorption time, ionic strength, and sample pH. Under the optimized microextraction and gas chromatography with mass spectrometry conditions, the method demonstrated good linearity over the range of 0.5–500 µg/L with a coefficient of determination of R= 0.9904, low limit of detection (0.15 µg/L) and limit of quantification (0.50 µg/L) of bisphenol A, good analyte recoveries (84–120%) and acceptable relative standard deviation (1.8–14.9%, = 6). The proposed method was successfully applied to three environmental water samples, and bisphenol A was detected in all samples.  相似文献   

7.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

8.
A highly efficient ultrasonic-assisted dispersive liquid–liquid microextraction (UA-DLLME) procedure coupled with gas chromatography–mass spectrometry was developed for simultaneous analysis of multiclass herbicides with endocrine-disrupting properties in environmental water samples. The parameters affecting the method’s extraction efficiency, such as the types and volumes of the extractant and dispersive solvents, sample pH, and salt concentration, were systematically optimized by response surface methodology based on central composite design to achieve excellent recoveries for multiclass herbicides. The final UA-DLLME protocol involved 115.6 µL of chloroform (extractant), 861.5 µL of ethanol (dispersive solvent), 5.0 mL of water samples, pH 10.0, and 4.3% NaCl solution. The performance of the developed UA-DLLME was compared with that of conventional solid-phase extraction (SPE). Under optimal extraction conditions, UA-DLLME exhibited a higher enrichment factor and greater sensitivity than SPE, with limits of detection and limits of quantification of 0.004–0.024 and 0.013–0.079 µg L?1, respectively, for seawater samples. The accuracy and precision of UA-DLLME were satisfactory for seawater samples spiked at three levels (0.2, 2.5, and 5.0 µg L?1). Average recoveries ranging from 82.3 to 101.8% were achieved, with relative standard deviations lower than 12.8%. The proposed analytical method was successfully applied to the simultaneous determination and quantification of 17 herbicides in environmental river and seawater samples.  相似文献   

9.

An environmentally benign method of sample preparation based on dispersive liquid–liquid microextraction and solidification of floating organic droplets (DLLME-SFO) coupled with high-performance liquid chromatography with ultraviolet detection has been developed for analysis of non-steroidal anti-inflammatory drugs (NSAIDs) in biological fluids. A low-toxicity solvent was used to replace the chlorinated solvents commonly used in conventional DLLME. Seven conditions were investigated and optimized: type and volume of extraction solvent and dispersive solvent, extraction time, effect of addition of salt, and sample pH. Under the optimum conditions, good linearity was obtained in the range 0.01–10 µg mL−1, with coefficients of determination (r 2) >0.9949. Detection limits were in the range 0.0034–0.0052 µg mL−1 with good reproducibility (RSD) and satisfactory inter-day and intra-day recovery (95.7–115.6 %). The method was successfully used for analysis of diclofenac, mefenamic acid, and ketoprofen in human urine. Analysis of urine samples from a patient 2 and 4 h after administration of diclofenac revealed concentrations of 1.20 and 0.34 µg mL−1, respectively.

  相似文献   

10.
In this study, a simple and accurate sample preparation method based on dispersive solid‐phase extraction and dispersive liquid‐liquid microextraction has been developed for the determination of seven novel succinate dehydrogenase inhibitor fungicides (isopyrazam, fluopyram, pydiflumetofen, boscalid, penthiopyrad, fluxapyroxad, and thifluzamide) in watermelon. The watermelon samples were extracted with acetonitrile, cleaned up by dispersive solid‐phase extraction procedure using primary secondary amine, extracted and concentrated by the dispersive liquid‐liquid microextraction procedure with 1,1,2,2‐tetrachloroethane, and then analyzed by ultra high performance liquid chromatography with tandem mass spectrometry. The main experimental factors affecting the performance of dispersive solid‐phase extraction and dispersive liquid‐liquid microextraction procedure on extraction efficiency were investigated. The proposed method had a good linearity in the range of 0.1–100 µg/kg with correlation coefficients (r) of 0.9979–0.9999. The limit of quantification of seven fungicides was 0.1 µg/kg in the method. The fortified recoveries of seven succinate dehydrogenase inhibitor fungicides at three levels ranged from 72.0 to 111.6% with relative standard deviations of 3.4–14.1% (n = 5). The proposed method was successfully used for the rapid determination of seven succinate dehydrogenase inhibitor fungicides in watermelon.  相似文献   

11.
A sensitive and rapid method based on alcoholic-assisted dispersive liquid–liquid microextraction followed by high-performance liquid chromatography for determination of citalopram in human plasma and urine samples was developed. The effects of six parameters (extraction time, stirring speed, pH, volume of extraction and disperser solvents, and ionic strength) on the extraction recovery were investigated and optimized utilizing Plackett–Burman design and Box–Behnken design, respectively. According to Plackett–Burman design results, the volume of disperser solvent, stirring speed, and extraction time had no effect on the recovery of citalopram. The optimized condition was a mixture of 172 µL of 1-octanol as extraction solvent and 400 µL of methanol as disperser solvent, pH of 10.3 and 1% w/v of salt in the sample solution. Replicating the experiment in optimized condition for five times, gave the average extraction recoveries equal to 89.42%. The detection limit of citalopram in human plasma was obtained 4 ng/mL, and the linearity was in the range of 10–1200 ng/mL. The corresponding values for human urine were 5.4 ng/mL with the linearity in the range of 10–2000 ng/mL. Relative standard deviations for inter- and intraday extraction of citalopram were less than 7% for five measurements. The proposed method was successfully implemented for the determination of citalopram in human plasma and urine samples.  相似文献   

12.
Dispersive liquid—liquid microextraction coupled with high-performance liquid chromatography—diode-array detection was applied for the extraction and determination of 11 priority pollutant phenols in wastewater samples. The analytes were extracted from a 5-mL sample solution using a mixture of carbon disulfide as the extraction solvent and acetone as the dispersive solvent. After extraction, solvent exchange was carried out by evaporating the solvent and then reconstituting the residue in a mixture of methanol–water (30:70). The influences of different experimental dispersive liquid—liquid microextraction parameters such as extraction solvent type, dispersive solvent type, extraction and dispersive solvent volume, salt addition, and pH were studied. Under optimal conditions, namely pH 2, 165-μL extraction solvent volume, 2.50-mL dispersive solvent volume, and no salt addition, enrichment factors and limits of detection ranged over 30–373 and 0.01–1.3 μg/L, respectively. The relative standard deviation for spiked wastewater samples at 10 μg/L of each phenol ranged between 4.3 and 19.3% (n = 5). The relative recovery for wastewater samples at a spiked level of 10 μg/L varied from 65.5 to 108.3%.  相似文献   

13.
ABSTRACT

As a pre-concentration technique, bubble-in-drop, single-drop microextraction has received considerably less attention than its counterparts despite its efficiency, simplicity, eco-friendliness and affordability. Herein, we present the development of this method using a non-chlorinated solvent – dodecane and its application in the extraction and pre-concentration of 17 phthalic acid esters (PAEs) from aqueous samples. The optimised method used 1 µL dodecane and 0.5 µL air bubble, 5% NaCl and a static extraction time of 20 min. The method demonstrates sufficient linearity (R2 ≥ 0.9635) and repeatability (%RSD ≤ 20% for n = 27) with the estimated limit of detection in the range 0.23–0.69 ng/mL using the statistical approach for a 17-component standard mixture of the esters. Enrichment factors ranged from 10 to 38 for all the esters, except dimethyl phthalate that did not show any preference to the dodecane solvent used in the study. Application of the technique to contaminated soil samples detected only one ester – bis-(2-ethylhexyl) phthalate (0.62 ng/g of soil), the most common PAE found in most solid waste dumpsite studies due to its wide use in everyday life. The study further highlights the difficulty of extracting the phthalates from soil samples owing to their susceptibility to hydrolysis thereby lowering their extractability from the aqueous solutions which is a prime requirement for the liquid-based microextraction techniques.  相似文献   

14.
This article describes the preconcentration of methyl methacrylate in produced water by the dispersive liquid–liquid microextraction using extraction solvents lighter than water followed by gas chromatography. In the present experiments, 0.4 mL dispersive solvent (ethanol) containing 15.0 μL extraction solvent (toluene) was rapidly injected into the samples and followed by centrifuging and direct injection into the gas chromatograph equipped with flame ionization detector. The parameters affecting the extraction efficiency were evaluated and optimized including toluene (as extraction solvent), ethanol (as dispersive solvent), 15 μL and 0.4 mL (as the volume of extraction and dispersive solvents, respectively), pH 7, 20% ionic strength, and extraction's temperature and time of 20°C and 10 min, respectively. Under the optimum conditions, the figures of merits were determined to be LOD = 10 μg/L, dynamic range = 20–180 μg/L, RSD = 11% (n = 6). The maximum recovery under the optimized condition was determined to be 79.4%.  相似文献   

15.
A rapid and sensitive method has been developed for the determination of biphenyl and biphenyl oxide in water samples using dispersive liquid–liquid microextraction followed by gas chromatography. This method involves the use of an appropriate mixture of extraction solvent (8.0?µL tetrachloroethylene) and disperser solvent (1.0?mL acetonitrile) for the formation of cloudy solution in 5.0?mL aqueous sample containing biphenyl and biphenyl oxide. After extraction, phase separation was performed by centrifugation and biphenyl and biphenyl oxide in sedimented phase (5.0?±?0.3?µL) were determined by gas chromatography-flame ionisation (GC-FID) system. Type of extraction and disperser solvents and their volumes, salt effect on the extraction recovery of biphenyl and biphenyl oxide from aqueous solution have been investigated. Under the optimum conditions and without salt addition, the enrichment factors for biphenyl and biphenyl oxide were 819 and 785, while the extraction recovery were 81.9% and 78.5%, respectively. The linear range was (0.125–100?µg L?1) and limit of detection was (0.015?µg?L?1) for both analytes. The relative standard deviation (RSD, n?=?4) for 5.0?µg?L?1 of analytes were 8.4% and 6.7% for biphenyl and biphenyl oxide, respectively. The relative recoveries of biphenyl and biphenyl oxide from sea, river water and refined water (Paksan company) samples at spiking level of 5.0?µg?L?1 were between 85.0% and 100 %.  相似文献   

16.
A simple and reliable method has been developed for the rapid analysis of trace levels of malachite green from water samples using dispersive liquid–liquid microextraction and high-performance liquid chromatography-diode array detection. Factors relevant to the microextraction efficiency, such as the type and volume of extraction solvent, nature and volume of the disperser solvent, the effect of salt, sample solution temperature and the extraction time were investigated and optimised. Under the optimal conditions the linear dynamic range of malachite green was from 0.2 to 100.0?µg?L?1 with a correlation coefficient of 0.9962. The detection limit and limit of quantification were 0.1?µg?L?1 and 0.3?µg?L?1, respectively. The relative standard deviation (RSD) was less than 2.6% (n?=?5) and the recoveries of malachite green (5.0?µg?L?1) from water samples were in the range of 99.2?±?1.7%. Finally the proposed method was successfully applied for the analysis of malachite green from fish farming water samples.  相似文献   

17.
A rapid, simple, and sensitive method was developed for lead preconcentration and separation in various real samples by dispersive liquid–liquid microextraction based on the freezing of floating organic drop. In this method, a suitable extraction solvent dissolved in a dispersive solvent was quickly syringed into the water sample so that the solution became turbid. Then, two phases were separated by centrifugation. The floating extractant droplet can be easily solidified on an ice bath and taken out of the water sample. Then, it can be liquefied instantly at room temperature, and analyte can be determined in it. In the creation of a hydrophobic complex with lead, 1-(2-pyridylazo)-2-naphthole (PAN) was used as the chelating agent. 1-Undecanol and acetone were used as extraction and disperser solvent. To achieve the highest recovery, some factors (type and volume of dispersive and extraction solvent, pH, PAN concentration, and salt concentration) were optimised. Under optimised conditions (pH = 9, 1.0 × 10–3 mol L?1 PAN, 15% w/v NaCl, 100 µL 1-undecanol, and 0.3 mL acetone), the lead calibration graph was linear from 1.5 to 80 μg L?1. The detection limit and preconcentration factor were 0.5 μg L?1 and 50, respectively. Lead was successfully determined in water and food (spinach, rice, potato, carrot, and black tea bag) samples by this method.  相似文献   

18.
A dispersive liquid–liquid micellar microextraction (DLLMME) method coupled with ultra‐high‐performance liquid chromatography (UHPLC) using Diode Array Detector (DAD) detector was developed for the analysis of five pharmaceutical compounds of different nature in wastewaters. A micellar solution of a surfactant, polidocanol, as extraction solvent (100 μL) and chloroform as dispersive solvent (200 μL) were used to extract and preconcentrate the target analytes. Samples were heated above critical temperature and the cloudy solution was centrifuged. After removing the chloroform, the reduced volume of surfactant was then injected in the UHPLC system. In order to obtain high extraction efficiency, the parameters affecting the liquid‐phase microextraction, such as time and temperature extraction, ionic strength and surfactant and organic solvent volume, were optimized using an experimental design. Under the optimized conditions, this procedure allows enrichment factors of up to 47‐fold. The detection limit of the method ranged from 0.1 to 2.0 µg/L for the different pharmaceuticals. Relative standard deviations were <26% for all compounds. The procedure was applied to samples from final effluent collected from wastewater treatment plants in Las Palmas de Gran Canaria (Spain), and two compounds were measured at 67 and 113 µg/L in one of them. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A dispersive liquid–liquid microextraction (DLLME) method for separation/preconcentration of ultra trace amounts of Co(II) and its determination with FAAS was developed. The DLLME behavior of Co(II) using Aliquat 336-chloride as ion pairing agent was systematically investigated. The factors influencing the ion pair formation and extraction by DLLME method were optimized. Under the optimized conditions for 150 µL of extraction solvent (carbon tetrachloride), 1.5 mL disperser solvent (acetonitrile) and 5 mL of sample, the enrichment factor was 30. The detection limit was 5.6 µg L?1 and the RSD for replicate measurements of 1 mg L?1 was 1.32 %. The calibration graph using the preconcentration system for cobalt was linear from 40 to 400 µg L?1 with a correlation coefficient of 0.999. The proposed method was successfully applied for determination of cobalt in black tea, paprika and marjoram real samples.  相似文献   

20.
A simple, rapid and efficient method, dispersive liquid–liquid microextraction (DLLME) in conjunction with high-performance liquid chromatography (HPLC), has been developed for the determination of three carbamate pesticides (methomyl, carbofuran and carbaryl) in water samples. In this extraction process, a mixture of 35 µL chlorobenzene (extraction solvent) and 1.0 mL acetonitrile (disperser solvent) was rapidly injected into the 5.0 mL aqueous sample containing the analytes. After centrifuging (5 min at 4000 rpm), the fine droplets of chlorobenzene were sedimented in the bottom of the conical test tube. Sedimented phase (20 µL) was injected into the HPLC for analysis. Some important parameters, such as kind and volume of extraction and disperser solvent, extraction time and salt addition were investigated and optimised. Under the optimum extraction condition, the enrichment factors and extraction recoveries ranged from 148% to 189% and 74.2% to 94.4%, respectively. The methods yielded a linear range in the concentration from 1 to 1000 µg L?1 for carbofuran and carbaryl, 5 to 1000 µg L?1 for methomyl, and the limits of detection were 0.5, 0.9 and 0.1 µg L?1, respectively. The relative standard deviations (RSD) for the extraction of 500 µg L?1 carbamate pesticides were in the range of 1.8–4.6% (n = 6). This method could be successfully applied for the determination of carbamate pesticides in tap water, river water and rain water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号