首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silver/silver chloride and bromide electrodes, prepared by anodizing ordinary silver electrodes, and the corresponding ion-selective electrodes based on silver sulphide, were tested for their susceptibility towards redox systems. It proved that the latter type of electrode responded significantly to strong oxidants. In contrast, the silver/silver halide types were highly resistant to redox interference provided that the silver halide layer was free from open pores. This could be achieved by generation of sufficiently thick layers and by selection of suitable current densities during electrodeposition (<20 mA cm-2). The interrelation between the conditions of silver chloride film generation and redox resistance of the resulting electrodes is described in detail.  相似文献   

2.
An online mercury preconcentration and determination system consisting of cold vapor atomic absorption spectrometry (CV-AAS) coupled to a flow injection (FI) method was studied. The method was developed involving the determination of ng/L levels of mercury retained on the silver wool solid sorbent. Experimental conditions such as sample volume, flow rate, stability of the column and effect of foreign ions on the determination of trace amounts of mercury were optimized. The detection limit is 3 ng/L and dynamic range 10–250 ng/L require only 50 mL of sample. The relative standard deviations (RSD) of the determinations are below 4%. The presence of common metal ions, such as K+, Na+, Cu2+, Pb2+, Fe3+, Ni2+, and Mn2+, does not interfere with the measurement of mercury by this method. The method was successfully applied to the determination of mercury in water and wastewater samples.  相似文献   

3.
The kinetics of a number of simple inorganic electrode reactions that are known or expected to follow outer-sphere pathways have been examined at mercury, silver, platinum, and gold-aqueous interfaces in order to explore the effects of varying the electrode material on outer-sphere reactivity. The electroreduction kinetics of Co(III) ammine complexes exhibited only mild dependences on the nature of the electrode material which were compatible with the expected variations in double-layer effects. However, the electrooxidation of Cr2+ proceeded at strikingly higher overpotentials on the solid surfaces compared with mercury electrodes. Similar effects were also seen for the electrooxidation of V2+, Eu2+ and Ru2+ in the presence of Cr2+. Much larger rate constants were observed for these aquo reactions at solid surfaces in the absence of Cr2+, although Cr2+ had no influence on Co(NH3)63+ electroreduction, or any reaction at mercury electrodes. It is speculated that the very large substrate effects upon the electrode kinetics of aquo couples arise from the influence of the inner-layer water structure on the reactant-solvent interactions experienced by these “structure-making” reactants at their plane of closest approach. The inhibiting influence of Cr2+ may be due to its ability to efficiently remove adsorbed catalytic contaminants by incorporation into a substitutionally inert Cr(III) electrooxidation product by means of a ligand-bridge mechanism.  相似文献   

4.
《Analytical letters》2012,45(15):2339-2363
Abstract

Electrodes based on amalgam materials were re-introduced in electroanalytical chemistry in the year 2000, partially as reaction to unsubstantiated public fears of liquid mercury. In this publication, the voltammetric behavior of 1-nitronaphthalene and 2-nitronaphthalene was investigated at a mercury meniscus-modified silver solid amalgam electrode. The reduction mechanism in mixed neutral buffer-methanol medium includes the four-electron reduction to hydroxylaminoderivative followed by a two-electron reduction to the amine in acidic medium, similarly to mercury electrodes. In alkaline media, both compounds show the splitting of the main four-electron reduction peak typical for mercury electrodes in two new ones, the first one corresponding to a one electron reduction of the nitroderivative to the nitro radical anion, which was confirmed by microcoulometry. Using optimized conditions (differential pulse voltammetry, Britton-Robinson buffer pH 7.0 – methanol (9:1) medium) the calibration dependences are linear in the range of 2·10?7 (4·10?7) to 1·10?4 mol L?1 for 1-nitronaphthalene (2-nitronaphthalene). After preconcentration of the analytes from drinking and river water samples using solid phase extraction the limit of determination was lowered to ~3·10?8 mol L?1.  相似文献   

5.
The electrochemical properties of single crystals of cerium fluoride alloyed with bivalent cations Sr2+, Ca2+, Ba2+, Sr2+ + Ca2+, Sr2+ + Ba2+, Ba2+ + Ca2+ and also with La3+ and La3+ + Ba2+ cations are studied using the dynamic voltammetry and impedance spectroscopy. The conductivity of symmetrical cells with Ag electrodes is determined using the method of impedance spectroscopy in the frequency range from 450 to 5 kHz at the temperatures from 20 to 100°C: for CeF3: Sr2+ (0.5 mol %) + Ba2+ (0.5 mol %), σ = σ0 exp[(?0.284 ± 0.005/kT]; for CeF3:Ca2+ (0.5 mol %) + Sr2+ (0.5 mol %), σ = σ0 exp[(?0.292 ± 0.017/kT]. The steady-state and dynamic voltammogams of symmetrical electrochemical cells with nonpolarizable reference electrodes and CeF3 single crystals alloyed with Sr2+, Ca2+, and Ba2+ bivalent cations exhibited ohmic polarization. For cells with CeF3 containing La3+ as an admixture, a hysteresis was observed, which could not be eliminated by chemical and electrochemical treatment of crystals. In the dynamic voltammetric curves of asymmetric cells with nonpolarizable and silver electrode and CeF3 crystals alloyed with Sr2+, Ca2+, and Ba2+, a range of ideal polarizability (from 0 to ~?2.7 V), and also cerium redox processes and silver fluorination-boundary regeneration were observed. In the dynamic voltammetric curves of asymmetric cells with CeF3 containing La3+ admixture, no range of ideal polarizability was observed; however, the reactions of silver fluorination and reduction of solid-electrolyte cerium were well pronounced at the corresponding potentials.  相似文献   

6.
Herein, we find that the surface plasmon resonance (SPR) spectra of silver nanoprisms in the presence of halide ions change gradually with reaction time. The changes in the spectra correspond to the shape transformation of silver nanoprisms. There are threshold concentrations of halide ions that initiate the shape‐transformation reaction. The threshold concentrations for Cl?, Br?, and I? are about 3×10?4 M , 1×10?6 M , and 1.5×10?6 M , respectively. Any concentrations of the added halide ions above these thresholds can eventually etch the silver nanoprisms into nanodisks if the reaction time is long enough. The higher the concentration of the halide ions, the higher the etching rate will be. The kinetics of the shape transformation of the silver nanoprisms can be studied by recording their time‐dependent surface plasmon resonance (SPR) spectra on a commercial UV/Vis–NIR spectrometer. The peak positions of in‐plane dipole SPR bands of silver colloids in the presence of chloride and bromide ions can be fitted very well with the biexponential functions. We propose that the fast components of the biexponential behaviors should correlate to the truncating effect on the corners of silver nanoprisms, and the slow component should correlate to the redeposition of the truncated residues onto the basal plane of the nanoplates.  相似文献   

7.
For the purpose of employing an inexpensive alternative to conventional platinum for use by upper-division as well as graduate students, polyaniline (PANI)-deposited stainless steel (SS) and mild steel (MS) electrodes are described as indicator electrodes for potentiometry and potentiometric titrations of some redox reactions. PANI is deposited on the nonplatinum metal by electrochemical polymerization of aniline using cyclic voltammetric technique. Alternate methods to produce the PANI electrodes are also suggested. The electrodes respond to concentration changes of hydroquinone (H2O), Fe2+/Fe3+, and [Fe(CN)6]4–/[Fe(CN)6]3– in HCL electrolytes, and the potential variation with concentration follows the Nernst relationship. Under identical experimental conditions, the response time of the PANI/SS, PANI/MS, and Pt electrodes for a change in concentration of Fe3+ in a mixed electrolyte of Fe2+ and Fe3+ is found to be about 20 s. Neutralization reaction of HC1 versus NaOH, redox reaction of Fe2+ and Ce4+, and redox reaction of Fe2+ and KMnO4 in several concentrations in the range from 1 mM to 100 mM are carried out using the PANI/SS, PANI/MS, and Pt indicator electrodes. The performance of the PANI/SS and PANI/MS electrodes is as good as that of the Pt at all concentration levels of the titrations. The electrodes can be reused for several titrations by storing them in an acid electrolyte for a long period of time. Thus, the conventional inert Pt or Au can be substituted for by using a PANI-deposited nonplatinum reactive metal as a potentiometric sensor for redox titrations.  相似文献   

8.
9.
Differential potentiometric titrations with two different ion-selective indicator electrodes are described. Ion-selective electrodes for Cl-, Br-, I-, F-, S2-, as well as glass and silver billet electrodes were used. The method was tested in the determination of binary mixtures of halides (Cl-, Br-, I-, and F-) by titration with solutions of silver nitrate, alone and mixed with lanthanum or thorium nitrate as required. Various factors influencing the determination were investigated. Results of simultaneous determinations of mixtures were in good agreement with the results of separate determinations within certain concentration limits. The method was successfully applied to the determination of a four-component halide mixture. Titrations of mixtures of fluoride with thiocyanate or hexacyanoferrate(III), and some other possibilities, are also reported.  相似文献   

10.
The formation of neutral mixed complexes of the MXmSp type (where M is a metal ion with m+ charge, X the inorganic anion, and S the sulfur-containing extractant) allows a selective extraction of various elements. The extraction of many metals from mineral acid solutions or from halide-sulfuric acid mixtures by 0.05 M O-isopropyl-N-ethylthiocarbamate(IPETC) solution in chloroform has been studied. (IPETC) possesses very high selectivity for silver and mercury ions in extractions from HNO3, H2)SO4, HClO4 and HCl solutions. In addition to silver and mercury, Cu, Au, Tl and Se are readily extracted from solutions containing bromide. From iodide solutions, copper, gold and thallium ions may be selectively extracted because silver and mercury cannot be extracted at concentrations of iodide above 0.1 M.(IPETC extracts metals as mixed complexes, containing the halide and apparently the extractant in the molecular form.  相似文献   

11.
In our study, the single‐use & eco‐friendly electrochemical sensor platform based on herbal silver nanoparticles (AgNPs) was developed for detection of mercury (II) ion (Hg2+). For this purpose, the surface of pencil graphite electrode (PGE) was modified with AgNPs and folic acid (FA), respectively. The concentrations of AgNPs and FA were firstly optimized by differential pulse voltammetry (DPV) to obtain an effective surface modification of PGE. Each step at the surface modification process was characterized by using cyclic voltammetry (CV) and electrochemical impedence spectroscopy (EIS). The limit of detection (LOD) for Hg2+ was estimated and found to be 8.43 μM by CV technique. The sensor presented an excellent selectivity for Hg2+ against to other heavy metal ions such as Ca2+, Cd2+, Cr3+, Cu2+, Mg2+, Ni2+, Pb2+, Zn2+, Co2+ and Mn2+. Moreover, a rapid, selective and sensitive detection of Hg2+ was successfully performed in the samples of tap water within 1 min.  相似文献   

12.
《Analytical letters》2012,45(13):1499-1509
Abstract

Inexpensive, disposable, carbon-filled polymer paste electrodes activated by a superficial layer of electro-active powder are reported. Sensors for silver, copper, lead and cadmium, halides, nitrate, pH and redox were thus prepared.  相似文献   

13.
Ion-selective electrodes with plasticized poly(vinyl chloride) membranes containing 13-membered azothia- and azoxythiacrown ether complexes with silver, mercury or copper ions have been investigated. The potentiometric response towards various anions was studied. For membranes based on azothiacrown ether (B) complexes the following selectivity patterns were found:I- > SCN-, Br- > Cl- ClO4 - > salicylate, NO3 - (complex B with silver), I- > ClO4 - > SCN-, Br- > salicylate > Cl-, NO3 - (complex B with mercury) and SCN- > I- > Br- > ClO4 - > Cl- > salicylate > NO3 - (complex B with copper). For azoxythiacrown ether (A) only membranes containing its complex with mercury exhibited pronounced anion response and the selectivity pattern was similar to that observed for complex B with mercury. The origin of the anion response has been discussed.  相似文献   

14.
Two oxidation waves are observed at mercury electrodes for tetraphenyllead in dichloromethane. The mechanisms of the oxidation processes have been investigated by dc and differential pulse polarography. The first wave is a broad two-electron step and represents the summation of a number of processes related to mercury exchange and halide abstraction. The exchange reactions are as follows: 2 Φ4Pb + Hg→2Φ3Pb+ + Φ2Hg+2e? 2 Φ3Pb+ + Hg→2Φ2Pb2+ + Φ2Hg+2e? Dichloroethane and HgCl2 are identified as products of controlled potential electrolysis experiments as well as Φ2Hg and Φ2PbCl2 implying that the coordinatively unsaturated Φ3Pb+ and/or Φ2Pb2+ react with the solvent dichloromethane and abstract chloride. The second oxidation process is the two electron step. Φ2Hg+Hg→2 ΦHg+ + 2e?Tetraalkyllead compounds (tetramethyl, tetraethyl, tetrabutyl) also give rise to related electrode processes at mercury electrodes and polarographic techniques may form the basis of a method for their analytical determination if separated chromatographically prior to detection.  相似文献   

15.
The processes of thermal decomposition of silver(I) and mercury(I) anthranilates and salicyloaldoximates were studied. Thermal, chemical and X-ray analyses and infrared spectroscopy were used to determine the mechanisms of decomposition of these complexes. The factor determining the decomposition is the character of the Ag+ and Hg 2 2+ ions, which are easily reduced to free metals. The final reaction product of the compounds of silver is the pure metal; the compounds of mercury are volatilized completely when heated.  相似文献   

16.
Abstract

In photographic industry and for preparing silver films, waste waters are rich with silver. Some of the silver is elecroanalytically regenerated, but low concentrations (0.5 gdm?3) stay in waste waters. In our work, we separated and concentrated the silver by ion exchange resin.

Fixing baths and stop baths are polyvalent solutions, therefore we examine synthetic solutions. For exchange of silver, Amberlit IRA — 120 and Dowex 50 × 4 were used. The batch method was used to obtain a static equilibrium. The optimum medium concentrations and the time for sorption were determined: 1 × 10?3 mol dm?3 HNO3 and 1 hour.

Silver elution from cation exchanger is based on silver transformation to a stable anion complex. Reference data determined the use of CN? and S2O3 2- for forming stable complexes. By varying the ligands, pH and eluant concentrations, optimum elution has been in 1 hour, 2M KCN and 1M Na2S2O3.  相似文献   

17.
The cyclic voltammetric behaviour of 8 metal ions at solid silver amalgam electrodes prepared by aging of a thin silver based mercury film electrode (SBMFE) and by deposition of silver and mercury on platinum were investigated. It was established that such electrodes behave in relation to some metals (Pb, Bi, Sn) similarly as silver electrodes i.e. the cyclic curves obtained with these electrodes at concentration 10?3M range show a prepeak-postpeak system corresponding to deposition and dissolution of the monolayer of deposit. On the other hand under the same conditions no prepeaks were observed for cadmium, zinc and thallium. In all cases investigated the heights of anodic stripping peaks were lower on curves obtained with aged SBMFE than on those obtained with fresh SBMFE having a mercury layer 1 μm thick.  相似文献   

18.
Glassy carbon electrodes were modified electrochemically by pretreatment in sulfate, phosphate or carbonate solutions by means of cycling the potential well into the positive limit of the solvent. Electrodes treated in this manner were then used to incorporate and concentrate a variety of redox species that were either cations or aromatic containing compounds, including Ru(bpy)2+3, Ru(NH3)3+6, Cu(NH3)2+4, ferrocene, methylviologen, 1,4-benzoquinone, anthraquinone-2-sulfonate, riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Surface-equivalent concentrations ranged from 5 × 10?9 to 1 × 10?7 mol cm?2 for electrodes pretreated for 10 min in sulfuric acid. An E1/2 vs. pH study of 1,4-benzoquinone, riboflavin, FMN and FAD in modified electrodes shows that the pKa values shift toward higher pH (nearly 2 pH units). Results concerning the incorporation of redox compounds detected only by mediation with other electroactive complexes and the study of the modified electrodes in electrocatalysis are also discussed.  相似文献   

19.
Aqueous batteries using inorganic compounds as electrode materials are considered a promising solution for grid-scale energy storage, while wide application is limited by the short life and/or high cost of electrodes. Organics with carbonyl groups are being investigated as the alternative to inorganic electrode materials because they offer the advantages of tunable structures, renewability, and they are environmentally benign. Furthermore, the wide internal space of such organic materials enables flexible storage of various charged ions (for example, H+, Li+, Na+, K+, Zn2+, Mg2+, and Ca2+, and so on). We offer a comprehensive overview of the progress of organics containing carbonyls for energy storage and conversion in aqueous electrolytes, including applications in aqueous batteries as solid-state electrodes, in flow batteries as soluble redox species, and in water electrolysis as redox buffer electrodes. The advantages of organic electrodes are summarized, with a discussion of the challenges remaining for their practical application.  相似文献   

20.
Improvements are described for the 2,4-xylenol spectrophotometric method for nitrate that reduce the elapsed and working time. Diluted (22 + 3) sulfuric acid is added quickly to the sample solution while the flask is immersed in tap water. 2,4-xylenol solution is added, the 6-nitro-2,4-xylenol formed is steam-distilled into a composite ammonia—isopropanol reagent, and the absorbance of the ammonium salt of 6-nitro-2,4-xylenol is measured. Further possible interferences are described. Br2, I2, ClO-, CIO3-, BrO3-, and I04-, cause low results by deactivating or destroying the 2,4-xylenol. Azide, hydrazine, and elemental carbon cause low results by reducing the nitrate in the strong sulfuric acid solution. Se+ causes low results because 2,4-xylenol is consumed in reducing Se4+ to the element. Pt4+ and Os8+ cause high results. Interferences from Br2, I2, ClO-, ClO3- lO3-, and I04- can be eliminated by reduction to the halide with sulfurous acid and precipitation with silver sulfate. Sulfurous acid reduction also eliminates interferences from V5+. Mn7+, Cr6+, S2O82-, and H202. Interferences from N3-, Br2, I2, and S2082- are eliminated merely by boiling a 0.5% sulfuric acid solution for 30 min (and precipitating any residual halide with silver sulfate).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号