首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This research found a cheap and efficient catalyst for electrooxidation of formaldehyde (HCHO). A CuO nano‐crystalline modified glassy carbon electrode (GCE) was fabricated and had an excellent electrocatalytic activity towards the oxidation of HCHO. Both the effect of potential scan rate and the effect of HCHO concentration on the electrocatalytic oxidation performance of the electrode were investigated. The amperometric current response of the electrode was proportional to HCHO concentration in the range of 1.0 µmol·L?1–10.0 mmol·L?1 with a detection limit (s/n=3) of 0.25 µmol·L?1. The electrode was stable, showing the CuO nano‐crystlline is promising for applications in fuel cells and electrochemical sensors.  相似文献   

2.
《Analytical letters》2012,45(8):883-893
A multi-wall carbon nanotubes (MWNTs) and cobalt(II) tetrakisphenylporphyrin (Co(II)TPP) modified glassy carbon electrode (MWNTs/Co(II)TPP/GCE) has been prepared. It can be used for individual or simultaneous determination of hydroquinone (HQ) and catechol (CC). The anodic peaks of HQ and CC can be separated well. Owing to the unique properties of MWNTs and special synergistic effect of MWNTs and Co(II)TPP, the modified electrode exhibited a remarkable and stable current response for CC and HQ. The linear ranges for CC and HQ were 1.0–450.0 µmol L?1 and 0.8–400.0 µmol L?1 with detection limits of 0.8 µmol L?1 and 0.5 µmol L?1, respectively. Furthermore, Co(II)TPP, MWNTs, and Co(II)TPP/MWNTs composite were also used to construct modified electrodes and the electrochemical performances were studied.  相似文献   

3.
《Analytical letters》2012,45(6):923-935
Electrochemically reduced graphene oxide (ER-GO) was prepared by reducing exfoliated graphene oxide sheets on a glassy carbon electrode (GCE). The voltammetric responses of Sudan I-IV were studied at the ER-GO modified GCE (ER-GO/GCE). Compared with chemically reduced graphene oxide (CR-GO) modified electrode (CR-GO/GCE), ER-GO/GCE showed higher voltammetric responses to Sudan I. The electrode had a linear response to Sudan I in the range of 0.04–8.0 µmol L?1 and a detection limit of 0.01 µmol L?1. The real sample determination indicated that the proposed method was reliable, effective, and sufficient.  相似文献   

4.
In this work, a glassy carbon electrode (GCE) modified with poly (diphenylamine)/multi-walled carbon nanotubes-β-cyclodextrin (PDPA/MWCNT-β-CD) film was constructed and used for the determination of 4-nitrophenol (4-NP). Diphenylamine was successfully electropolymerised onto MWCNT-β-CD-modified GCE by cyclic voltammetry in monomer solution and 5 mol L?1 H2SO4. The surface morphology of PDPA/MWCNT-β-CD film was characterised using scanning electron microscopy and electrochemical impedance spectroscopy. After adsorption of 4-NP on PDPA/MWCNT-β-CD at 0.2 V for 150 s, it showed a well-defined reduction peak in phosphate buffer solution at pH = 7. The PDPA/MWCNT-β-CD film enhanced the reduction peak current due to the complex formation between β-CD and 4-NP, presence of conductive polymer film as electron transfer mediator and also ability of MWCNTs for strong adsorptive and catalytic effect. Peak current increased linearly with 4-NP concentration in the range of 0.1 to 13.9 µg L?1. The detection limit was obtained as 0.02 µg L?1, which is better than other reported detection limits for the determination of 4-NP. The results showed that modified electrode has good sensitivity and selectivity. This sensor was used for the determination of 4-NP in water samples.  相似文献   

5.
The electrocatalysis oxidation of guanosine‐5′‐monophosphate (GMP) was investigated on Mg‐Al layered double hydroxide (LDH) functionalized with sodium dodecyl sulfate (SDS) and room temperature ionic liquid (RTIL) modified glass carbon electrode (GCE). The cyclic voltammogram of GMP on the modified electrode (RTIL/ LDH‐SDS/GCE) exhibited a well defined anodic peak at 1.091 V in 0.2 mol·L?1 pH 4.4 acetate buffer solution. The GMP oxidation was enhanced in the presence of anionic surfactant in the ?lms. The results suggest that the surfactant molecules intercalate the LDH layers to preconcentrate GMP molecules and the RTIL showed good ionic conductivity. The experimental parameters were optimized, the kinetic parameters were investigated and the probable oxidation mechanism was proposed. Under the optimized conditions, the oxidation peak current was proportional to GMP concentration in the range from 5.0×10?7 to 1.0×10?4 mol·L?1 with the correlation coefficient of 0.9987 and the detection limit was 1.0×10?7 mol·L?1. The RTIL/LDH‐SDS/GCE showed a good electrochemical response to the oxidation of GMP and would be developed into a new biosensor.  相似文献   

6.
A simple but highly sensitive electrochemical sensor for the determination of 8-azaguanine based on graphene-Nafion nanocomposite film-modified glassy carbon electrode (G-Nafion/GCE) was reported. The electrochemical behaviors of 8-azaguanine at G-Nafion/GCE were investigated by cyclic voltammetry (CV), square wave voltammetry (SWV), chronoamperometry (CA), and chronocoulometry (CC). The results showed that the electrochemical sensor exhibited excellent electrocatalytic activity to 8-azaguanine. 8-Azaguanine can be effectively accumulated at G-Nafion/GCE and produce a sensitive anodic peak, due to the synergetic functions of graphene and Nafion. Under the selected conditions, the modified electrode in pH 1.98 Britton-Robinson buffer solution showed a linear voltammetric response to 8-azaguanine within the concentration range of 5.0 × 10?8~3.0 × 10?5 mol L?1, with the detection limit of 1.0 × 10?8 mol L?1. And, the method was also applied to detect 8-azaguanine in spiked human urine with wonderful satisfactory results.  相似文献   

7.
In the present study a glassy carbon electrode, modified with nanocomposite of gold nanoparticles/multiwalled carbon nanotubes (GNPs/MWCNTs/GCE), was used for determination of dicyclomine hydrochloride (DcCl). The results showed that synergetic effects of GNPs and MWCNTs highly improved electrochemical response and sensitivity of the sensor. The electrochemical oxidation of DcCl was investigated by cyclic voltammetry and differential pulse voltammetry. Also, scanning electron microscopy and energy dispersive x-ray spectroscopy were used to evaluate microstructure of electrochemical sensor. The effect of various experimental parameters including pH and scan rate on the voltammetric response of DcCl were investigated. Under the optimal conditions linear response was observed in range of 1.0–1.2 × 102 µmol L?1 for DcCl. The lower detection limit was found to be 0.40 µmol L?1 for DcCl. The investigated method showed good stability, reproducibility and repeatability. The proposed sensor was successfully applied to the determination of DcCl in real samples.  相似文献   

8.
《Analytical letters》2012,45(2):248-258
A poly(diallyldimethylammonium chloride)-graphene-multiwalled carbon nanotube modified glassy carbon electrode was fabricated and evaluated by cyclic voltammetry and differential pulse voltammetry. The modified electrode offered high sensitivity, selectivity, excellent long-term stability, and electrocatalytic activity for uric acid and dopamine. This sensor showed wide linear dynamic ranges of 5.0 to 350.0 µmol L?1 for uric acid and 10.0 to 400.0 µmol L?1 for dopamine in the presence of 500 µmol L?1 ascorbic acid. The limits of detection were 0.13 for uric acid and 0.55 µmol L?1 for dopamine. This functionalized electrode has potential application in bioanalysis and biomedicine.  相似文献   

9.
《Analytical letters》2012,45(2):339-351
Abstract

A stable poly(crystal-violet) (PCV) electroactive film was electrodeposited on a glassy carbon electrode (GCE). The redoxation of hydroquinone showed a pair of well-defined peaks on a PCV electrode with a potential difference of 30 mV, which is 120 mV less than that obtained on the GCE. At optimal conditions, the PCV electrode linearly responded to the hydroquinone in the range of 4 × 10?6 mol · L?1 to 3.2 × 10?3 mol · L?1 and a detection limit of 8 × 10?8 mol · L?1 was obtained. The separations of the oxidation peak potentials between hydroquinone and the coexisting o-hydroquinone and m-hydroquinonewere 100 mV and 430 mV, respectively, which allows their simultaneous determination. The detection of hydroquinone in artificial sewage water was demonstrated with satisfactory results.  相似文献   

10.
《Analytical letters》2012,45(5):885-897
Hemoglobin (Hb) was successfully immobilized on a gold electrode modified with gold nanoparticles (AuNPs) via a molecule bridge 1,6-hexanedithiol (HDT). The AFM images suggested that the HDT/gold electrode could adsorb more AuNPs. UV-vis spectra indicated that Hb on AuNPs/HDT film retained its near-native secondary structures. The electrochemical behaviors of the sensor were characterized with cyclic voltammetric techniques. The resultant electrode displayed an excellent electrocatalytical response to the reduction of hydrogen peroxide (H2O2). The linear relationship existed between the catalytic current and the H2O2 concentration ranging from 5.0 × 10?8 to 1.0 × 10?6 mol · L?1. The detection limit (S/N = 3) was 1.0 × 10?8 mol · L?1.  相似文献   

11.
Copper nanoparticles (Cu-NPs) were incorporated into chitosan hydrogel to form a film on the surface of a glassy carbon electrode (GCE) leading to a sensing element for D-arabinitol with excellent oxidative catalytic activity. The electrochemical response to D-arabinitol was studied by cyclic voltammetry and differential pulse voltammetry. Operational parameters affecting the response were examined and optimized, and a simple and sensitive method was established for the determination of D-arabinitol. Response is linear in the concentration range from 10 μmol·L?1 to 10 mmol·L?1, and the limit of detection is 1.0 μmol·L?1. The method may be combined with separation techniques in order to analyze for the ratio of D- and L-arabinitol which is a diagnostic marker for candidiasis.  相似文献   

12.
The high-quality CTAB-stabilized gold nanorods (Au NRs) were prepared by the way of seed-mediated protocol. The microstructure and composition of the Au NRs were identified by transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV–visible spectroscopy. Further, a novel non-enzymatic electrochemical sensor of nitrite based on Au NRs–Nafion-modified glassy carbon electrode (GCE) was successfully developed. Under the optimum experimental conditions, the electrochemical behaviors of nitrite on the Au NRs–Nafion-modified GCE were systematically studied by electrochemical impedance spectroscopy, cyclic voltammetry and chronoamperometry. The electrochemical investigations indicated that the Au NRs–Nafion-modified GCE had a wide linear range of 3.0 × 10?6–6.0 × 10?3 mol L?1, an acceptable sensitivity of 130.9 ± 0.05 μA mM?1 cm?2, a fast response time of 3 s and a low detection limit of 0.64 ± 0.02 μmol L?1 at the signal-to-noise ratio of 3 (S/N = 3). Additionally, the electrochemical sensor also showed good stability and favorable anti-interference capability for the detection of nitrite.  相似文献   

13.
A self-assembled sensor based on a boron-doped diamond was investigated as a sensitive tool for voltammetric analysis of a member of a pyridine herbicide family - picloram. A cyclic voltammetry and a differential pulse voltammetry were applied for investigation of the voltammetric behaviour and quantification of this herbicide. Picloram yielded one well-developed irreversible oxidation signal at a very positive potential about +1.5 V vs. Ag/AgCl/3 mol L?1 KCl electrode in an acidic medium and 1 mol L?1 H2SO4 was chosen as a suitable supporting electrolyte. Operating parameters of differential pulse voltammetry were optimized and the proposed voltammetric method provided a high repeatability (a relative standard deviation of 20 repeated measurements at a concentration level of picloram of 50 µmol L?1 equaled to 2.58%), a linear concentration range from 2.5 to 90.9 µmol L?1 and a low limit of detection (LD = 1.64 µmol L?1). Practical usefulness of the ‘environmentally-green’ electrochemical sensor was verified by an analysis of spiked water samples with satisfactory recoveries.  相似文献   

14.
A glassy carbon electrode (GCE) modified with docosyltrimethylammonium chloride (DCTMACl) is used for simultaneous determination of dopamine (DA) and ascorbic acid (AA) using differential pulse voltammetry (DPV) technique in 0.10 mol·L?1 phosphate buffer solution of pH 5.0. The cationic surfactant DCTMACl modified film has a positive charge. DA exists as the positively charged species, whereas AA is the negatively charged one in the solution. Thus, at DCTMACl film-modified GCE, the oxidation peak potential of AA shifts toward less negative potential and the peak current of AA increases a little, while the oxidation peak potential of DA shifts toward more positive potential and peak current decreases greatly in comparison with that on bare electrode. The two anodic peaks are separated around 200 mV. Under optimal conditions, the catalytic peak currents obtained from DPV increase linearly with concentrations of DA and AA in the ranges of 1.0?×?10?5 to 1.0?×?10?3?mol·L?1. This electrode has good reproducibility, high stability in its voltammetric response, and low detection limit (micromolar) for both AA and DA. The modified electrode has been applied to the determination of DA and AA in injection.  相似文献   

15.
《Analytical letters》2012,45(7):1321-1332
Abstract

A novel amperometric nitric oxide (NO) sensor based on a glassy carbon electrode modified with thionine and Nafion films has been developed. The oxidation peak current of NO increased significantly at the poly(thionine)/Nafion‐modified glassy carbon electrode (GCE), which can be used for the detection of NO. The oxidation peak current was linear with the concentration of nitric oxide over the range from 3.6×10?7 to 6.8×10?5 mol · L?1, and the detection limit was 7.2×10?8 mol · L?1. This nitric oxide sensor showed high selectivity to nitric oxide determination, and some potential interference could be eliminated effectively. The nitric oxide sensor has been applied to monitor NO release from rat kidney stimulated by L‐arginine. The results indicated the applicability of the NO sensor to biomedical samples.  相似文献   

16.
We report on the electrodeposition of palladium nanomaterials in choline chloride–based ionic liquid ethaline. A glassy carbon electrode (GCE) was modified with cobalt nanoparticles (acting as sacrificial templates) and a GCE modified with palladium nanoparticles (PdNPs) were fabricated and used to study the electrocatalytic oxidation of hydrazine (N2H4). Scanning electron microscopy revealed that the PdNP modified GCE has a uniform morphology. Zero current potentiometry was used for in-situ probing the changes in interfacial potential of the oxidation of hydrazine. An amperometric study showed that the PdNP modified GCE possesses excellent electrocatalytic activity towards N2H4. The modified electrode displays a fast response (<2 s), high sensitivity (74.9 μA m(mol L?1)?1?cm?2) and broad linearity in the range from 0.1 to 800 μmol L?1 with a detection limit of 0.03 μmol L?1 (S/N?=?3).
Figure
Scheme 1 illustrated the fabrication strategy of the PdNPs/GCE. The first step was the electrodeoposition of CoNPs on the bare GCE. The second step is consist of two processes: (1) A replacement reaction of CoNPs and Pd2+ was happened along with the formation of PdNPs. CoNPs on the electrode were translated into Co2+ and went into the solution. Pd2+ in the solution was translated into PdNPs and adhered to the GCE surface. (2) A certain voltages was applied, the unreacted Pd2+ was further electrochemical deposited on the formed PdNPs nucleus. This is the first attempt to joint chemical replacement action with template assisted electrodeposition.  相似文献   

17.
《Analytical letters》2012,45(4):689-704
Abstract

The voltammetric behavior of dopamine was studied at a glassy carbon electrode modified by cysteic acid, based on electrochemical oxidation of L ‐cysteine. The modified electrode showed strong electrocatalytic activity towards dopamine and good selectivity. In a phosphate buffer solution (pH 7.4), the anodic peak current obtain from the differential pulse voltammetry of dopamine was linearly dependent on its concentration in the range of 5×10?9 to 4.0×10?6mol · L?1, with a detection limit of 2×10?9mol · L?1. The low‐cost modified electrode had been applied to the determination of dopamine in human serum and urine samples with satisfactory results.  相似文献   

18.
Gallic acid (GA), as a main phenolic acid, has been considered the main player on the human health, including the effects of reduction of cholesterol, depression of hypertension, anti-oxidation, anti-microbial, protection against cardiovascular disease and cancer. This study describes the development, electrochemical characterization and utilization of a novel functionalized graphene oxide/poly(p-aminohippuric acid)–sodium dodecyl sulfate nanocomposite modified glassy carbon electrode (APTS@GO/PPAH-SDS/GCE) for the electrocatalytic determination of GA. The synthesized nanocomposite was characterized by different techniques such as Fourier-transform infrared spectroscopy, thermo-gravimetric analysis and transmission electron microscopy. The electrochemical oxidation of GA was investigated by cyclic voltammetry, differential pulse voltammetry and amperometry. The modified electrode showed a potent and persistent electron mediating behavior followed by well-defined oxidation peak of GA and the linear range of 0.006–2000 µmol L?1 with a detection limit of 1.7 nmol L?1 for GA (S/N?=?3) using amperometric method. Also, it was successfully used for the GA determination in the black tea and tab water as real samples. Additionally, this electrode exhibited good stability and reproducibility. The results imply that the APTS@GO/PPAH-SDS nanocomposite might be a promising candidate for practical applications in GA electrochemical detection.  相似文献   

19.
The electrochemical oxidation of fipronil is investigated on unmodified and multi-walled carbon-nanotube (MWCNT)-modified glassy carbon electrodes (GCEs), and its amperometric determination using batch injection analysis (BIA) is demonstrated. An oxidation peak was observed at 1.5 V in a 0.1 mol L?1 HClO4/acetone solution (50:50, v/v) on both surfaces. Although MWCNT-modified GCE provided greater sensitivity, the unmodified GCE showed low RSD value, wider linear range, and reduced adsorption of fipronil or its oxidized products on the electrode surface. A detection limit of 4.7 μmol L?1 and linear range of 25–300 μmol L?1 were obtained using a bare GCE. The method was applied in veterinary formulations with results in agreement with those obtained by high-performance liquid chromatography.  相似文献   

20.
A glassy carbon electrode (GCE) modified with carbon Printex 6L (Printex6L/GCE) as a novel sensor is proposed. A morphological study was carried out using scanning electron microscopy, and an electrochemical characterization of the proposed electrode was performed by cyclic voltammetry (CV) using [Fe(CN)6]4? as a redox probe. With the incorporation of the carbon Printex 6L film onto the GCE surface, the [Fe(CN)6]4? analytical signal was substantially increased and the difference between the oxidation and reduction potentials (ΔE p) decreased, a characteristic of the electrocatalytic effect. Furthermore, the use of carbon Printex 6L film resulted in an 84 % increase in the oxidation current and a 123 % increase in the reduction current. Faster charge transfer was observed at the proposed electrode/electrolyte interface during CV when compared with GCE. The Printex6L/GCE was tested for ranitidine (RNT) sensing and showed a decrease in the working potential and an increase in the analytical signal, when compared with GCE, again demonstrating an electrocatalytic effect. Under optimized experimental conditions, the developed square-wave adsorptive anodic stripping voltammetry (SWAdASV) method presented an analytical curve that was linear in RNT concentration range from 1.98 × 10?6 to 2.88 × 10?5 mol L?1 with a detection limit of 2.44 × 10?7 mol L?1. The developed Printex6L/GCE was successfully applied to the determination of RNT concentrations in human body fluid samples (urine and serum).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号