首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

A simple, highly sensitive voltammetric method for the determination of urapidil at poly(sodium4-styrenesulfonate) functionalized graphene-modified electrode (PSS-Gr/GCE) was described. Based on the PSS-Gr composites-modified glassy carbon electrode as a simple voltammetric sensor, it exhibited good conductivity and high sensitivity to urapidil. Under the optimize condition, a good linear relationship was obtained between peak currents and urapidil concentrations in the wider range of 2.0 × 10?9–8.0 × 10?8 mol L?1 and 2.0 × 10?7–2.0 × 10?5 mol L?1 with detection limit of 8 × 10?10 mol L?1 (S/N = 3). Based on the high sensitivity and good selectivity of the proposed electrode, the proposed method could apply to the detect of urapidil in urapidil sustained release tablets with satisfactory results.  相似文献   

2.
《Analytical letters》2012,45(15):2794-2804
Abstract

The reduction of luvastatin (FLV) at a hanging mercury-drop electrode (HMDE) was studied by square-wave adsorptive-stripping voltammetry (SWAdSV). FLV can be accumulated and reduced at the electrode, with a maximum peak current intensity at a potential of approximately ?1.26 V vs. AgCl/Ag, in an aqueous electrolyte solution of pH 5.25. The method shows linearity between peak current intensity and FLV concentration between 1.0 × 10?8 and 2.7 × 10?6 mol L?1. Limits of detection (LOD) and quantification (LOQ) were found to be 9.9 × 10?9 mol L?1 and 3.3 × 10?8 mol L?1, respectively.

Furthermore, FLV oxidation at a glassy carbon electrode surface was used for its hydrodynamic monitoring by amperometric detection in a flow-injection system. The amperometric signal was linear with FLV concentration over the range 1.0 × 10?6 to 1.0 × 10?5 mol L?1, with an LOD of 2.4 × 10?7 mol L?1 and an LOQ of 8.0 × 10?7 mol L?1. A sample rate of 50 injections per hour was achieved.

Both methods were validated and showed to be precise and accurate, being satisfactorily applied to the determination of FLV in a commercial pharmaceutical.  相似文献   

3.
《Analytical letters》2012,45(6):881-897
Abstract

The preparation and electrochemical characterization of a carbon composite electrode modified with copper(II)-resin as well as its behavior toward rutin were investigated using cyclic and linear sweep voltammetry. The best voltammetric response was observed for a composite composition of 20% (m/m) copper(II)-resin, 0.10 mol L?1 KNO3/10?6 mol L?1 HNO3 solution (pH 6.0) as the supporting electrolyte, and a scan rate of 50 mVs?1. A linear voltammetric response for rutin was obtained in the concentration range from 9.90 × 10?7 to 8.07 × 10?6 mol L?1, with a detection limit of 2.65 × 10?8 mol L?1. The proposed electrode was useful for the quality control and routine analysis of rutin in pharmaceutical formulations.  相似文献   

4.
《Analytical letters》2012,45(13):2026-2040
Abstract

The potentiometric response characteristics of a new copper(II) ion-selective PVC membrane electrode based on erythromycin ethyl succinate (EES) as ionophore were investigated. The electrode exhibited a Nernstian response to Cu2+ ions over the activity range of 1.5 × 10?2 to 2.0 × 10?6 mol L?1 with a limit of detection of 6.3 × 10?7 mol L?1. Stable potentials were obtained in the pH range of 5.5–6.5. The potentiometric selectivity coefficients were calculated by using fixed interference method and revealed no important interferences except for Ag+. This electrode was successfully applied as an indicator electrode in determination of copper ions in real water samples.  相似文献   

5.
Yazhen Wang 《Mikrochimica acta》2011,172(3-4):419-424
The electrochemistry of uric acid at a gold electrode modified with a self-assembled film of L-cysteine was studied by cyclic voltammetry and differential pulse voltammetry. Compared to the bare gold electrode, uric acid showed better electrochemical response in that the anodic peak current is stronger and the peak potential is negatively shifted by about 100 mV. The effects of experimental conditions on the oxidation of uric acid were tested and a calibration plot was established. The differential pulse response to uric acid is linear in the concentration range from 1.0?×?10?6 to ~?1.0?×?10?4 mol?L?1 (r?=?0.9995) and from 1.0?×?10?4 to ~?5.0?×?10?4 mol?L?1 (r?=?0.9990), the detection limit being 1.0?×?10?7 mol?L?1 (at S/N?=?3). The high sensitivity and good selectivity of the electrode was demonstrated by its practical application to the determination of uric acid in urine samples.
Cyclic voltammograms of UA at the bare electrode (a,b) and the L-Cys/Au electrode (c,d,e) in HAc-NaAc buffer containing different concentrations of UA. (a,c): blank; (b, d): 2.0?×?10?5 mol?L?1; (e) 4.0?×?10?5 mol?L?1. Scan rate: 100 mV?s?1  相似文献   

6.
《Analytical letters》2012,45(6):1046-1054
The determination of sildenafil citrate using differential pulse voltammetry and a cathodically pre-treated boron-doped diamond electrode is described. The obtained analytical curve is linear in the sildenafil concentration range 7.3 × 10?7 ? 7.3 × 10?6 mol L?1 in a 0.1 mol L?1 H2SO4, with a detection limit of 6.4 × 10?7 mol L?1. The proposed method, which is fast and simple to carry out, was successfully applied in the determination of sildenafil citrate in Viagra® pharmaceutical formulations, with results in close agreement (at 95% confidence level) with those obtained using a comparative HPLC method.  相似文献   

7.
《Analytical letters》2012,45(6):1010-1021
Abstract

A carbon paste electrode modified with cobalt phthalocyanine (CPECoPc) was developed and applied to the determination of hydrazine [N2H4] in industrial boiler feed water. The CPECoPc exhibited good electrocatalytical activity for hydrazine oxidation at pH 13. A linear correlation was obtained between anodic peak current (Iap) and hydrazine concentration in the range of 1.25 × 10?4 to 9.80 × 10?4 mol L?1, fit by the equation Iap = 1.47 + 4.90 × 105 [N2H4] with a correlation coefficient of 0.9967. A detection limit of 7.35 × 10?5 mol L?1 was obtained. Recovery of hydrazine from three samples ranged between 99.0% and 102.9%. The modified electrode showed no interference by cations commonly present in boiler water, such as K+, Na+, Ca2+, Mg2+, Al3+, Pb2+, and Zn2+. The results obtained for hydrazine in boiler water using the proposed modified electrode are in agreement with the data obtained by a standard spectrophotometric method, at the 95% confidence level.  相似文献   

8.
《Analytical letters》2012,45(17):3187-3197
Abstract

A multicommutation flow system for the spectrophotometric determination of hypochlorite in bleaching products is proposed. In this system, N,N-diethyl-p-phenylenediamine (DPD) reacts with hypochlorite, and the product was monitored at 515 nm. The analytical curve for hypochlorite was linear in the concentration range from 2.68 × 10?5 to 1.88 × 10?4 mol L?1 (2–14 mg L?1) with a detection limit of 6.84 × 10?6 mol L?1 (0.51 mg L?1). The sampling rate was 45 h?1, and a relative standard deviation of 1.4% (n = 10) was obtained. The recovery of this analyte ranged from 97.2% to 102.5%, and the results found using the proposed spectrophotometric multicommutated flow system agreed with the data obtained using a reference method (iodometric titration) at the 95% confidence level.  相似文献   

9.
《Analytical letters》2012,45(17):3021-3033
Abstract

The electrochemical reduction of cinnarizine was investigated by cyclic and linear sweep adsorptive voltammetry at glassy carbon electrode in Britton-Robinson buffers over the pH range 2.5–11.5. For analytical purposes, a well-defined adsorption-controlled cathodic peak was obtained at pH 2.5. By cathodic adsorptive linear sweep voltammetry, a linear calibration plot was obtained in the range of 2.0 × 10?7 to 5.0 × 10?6 mol L?1 with detection limit of 9.0 × 10?9 mol L?1. The method was successfully applied to the determination of cinnarizine in commercial formulations with mean recovery and relative standard deviation of 100.24% and 1.46, respectively. The proposed method was also applied for drug determination in spiked serum samples by applying the standard addition method with a mean recovery of 97.80% and standard deviation of 3.06.  相似文献   

10.
A new electrode was developed by one-step potentiostatic electrodeposition (at ?2.0 V for 20 s) of Au/SiO2 nanoparticles on a glassy carbon electrode. The resulting electrode (nano-Au/SiO2/GCE) was characterized by scanning electronic microscopy, X-ray photoelectron spectroscopy and electrochemical techniques. The electrochemical behavior of dihydronicotinamide adenine dinucleotide (NADH) at the nano-Au/SiO2/GCE were thoroughly investigated. Compared to the unmodified electrode, the overpotential decreased by about 300 mV, and the current response significantly increased. These changes indicated that the modified electrode showed excellent catalytic activity in the oxidation of NADH. A linear relationship was obtained in the NADH concentration range from 1.0?×?10?6 to 1.0?×?10?4 mol?L?1. In addition, amperometric sensing of ethanol at the nano-Au/SiO2/GCE in combination with alcohol dehydrogenase and nicotinamide adenine dinucleotide was successfully demonstrated. A wide linear response was also found for ethanol in the range from 5.0?×?10?5 to 1.0?×?10?3 mol?L?1 and 1.0?×?10?3 to 1.0?×?10?2 mol?L?1, respectively. The method was successfully applied to determine ethanol in beer and biological samples.  相似文献   

11.
《Analytical letters》2012,45(6):1143-1158
Abstract

A sensitive and reliable stripping voltammetry method was developed to determine the presence of Ceftiofur antibiotic drug. This method is based on the adsorptive accumulation of the drug at a hanging mercury drop electrode and then the initiation of a negative sweep that yielded well‐defined cathodic peaks at ?0.65 V (1 C) and ?1.00 V (2 C) vs. Ag/AgCl reference electrode. To achieve high sensitivity, various experimental and instrumental variables were investigated such as supporting electrolyte, pH, accumulation time and potential, drug concentration, scan rate, convection rate, and working electrode area. The monitored adsorptive current of peak 1 C was directly proportional to the concentration of Ceftiofur; it shows a linear response in the range from 0.50×10?8 to 8.00×10?8 mol L?1 (correlation coefficient=0.998); and the limit of detection is 6.00×10?10 mol L?1 at an accumulation time of 300 s. The applicability of this approach was illustrated by the determination of Ceftiofur in pharmaceutical preparations and bovine serum.  相似文献   

12.
《Analytical letters》2012,45(16):2933-2943
Abstract

Spectrofluorimetry for the determination of prulifloxacin (PUFX) was developed based on the strong fluorescence of PUFX after adding fluorescence probe yttrium in buffer solution (pH = 6.80), and various factors of influencing fluorescence have been researched. Under the optimum conditions, the liner range was 2.0 × 10?8 to 9.1 × 10?6 mol L?1 and the detection limit was 8.5 × 10?9 mol L?1. The relative standard deviation was 2.1% for 11 measurements of 5.0 × 10?7 mol L?1 PUFX standard solution. The mechanism of the sensitizing effect of probe was discussed. The method was applied for the determination of PUFX in actual sample; the result obtained was satisfactory.  相似文献   

13.
《Analytical letters》2012,45(1):154-165
Abstract

Glucose present in honey was rapidly determined by the differential amperometric method using two tubular reactors containing glucose oxidase and peroxidase. The linear dynamic range extends from 5 × 10?5 to 2 × 10?4mol L?1, at pH 7.0. At flow rate of 1.5 mL min?1 and injecting 150-µL sample volumes, a sampling frequency of the 33 determinations per hour is afforded. The reproducibility of the methods showed a relative standard deviation (RSD) < 4%. The detection limit of this method is 1.7 × 10?5 mol L?1. The samples analyses were compared with the parallel spectrophotometric determination.  相似文献   

14.
《Analytical letters》2012,45(4):678-688
Abstract

MCM-41 was synthesized with uniform pore networks and then used to modify a carbon-paste electrode (CPE). The electrochemical behavior of rutin was investigated. Compared with the bare CPE, the MCM-41–modified CPE remarkably enhances the redox peak currents of rutin, attributed to large surface area, high sorption capacity, and specific mesopores. Based on this, a sensitive and convenient electrochemical method was developed for the analysis of rutin. The linear range is from 2.0 × 10?8 to 1.0 × 10?6 mol L?1, and the limit of detection is 1.5 × 10?8 mol L?1. Finally, this method was employed to determine rutin in traditional Chinese medicines.  相似文献   

15.
The sufficient amounts of bis(salicylaldehyde) thiocarbohydrazone (STCH) as a lipophilic selective element (3%, w/w), sodium nitrobenzene (NB) as a plasticizer (64%, w/w), tetraphenyl borate (NaTPB) as an anionic additive (3%, w/w), and poly vinyl chloride (PVC) as a polymeric matrix (30%, w/w) was employed to form a PVC membrane of a new Pr3+ ions selective sensor to apply as an indicator electrode in analytical applications. The best electrode response was observed in the slope (19.5 ± 0.7 mV per decade) over a wide concentrations from lower (1.0 × 10?6 mol L–1) to higher (1.0 × 10?2 mol L–1) of Pr3+ ion solution with a detection limit of 8.5 × 10–7 mol L–1. This electrode showed the fast response time about 10 second for praseodymium ion concentration range of 1.0 × 10–6 to 1.0 × 10–2 mol L–1, in the pH range of 2.3–7.9. The matched potential method was applied to study the selectivity of electrode toward Pr3+ ions in comparison with many common cations. The results showed the negligible disturbance of all other cations on the proposed praseodymium(III) electrode. The making sensor has been employed successfully as an indicator electrode in the potentiometric titration of praseodymium(III) solution with EDTA at pH 6.0. Moreover the applicability of the sensor was studied in determination of Pr3+ ion in mixtures of different ions.  相似文献   

16.
A novel potentiometric sensor, based on carbon paste electrode (CPE), modified with ion-imprinted polymer (IIP) and multi-walled carbon nanotubes (MWCNTs), is introduced for detection of chromium (III). The IIP nanomaterial was synthesised and characterised by using scanning electron microscopy and Fourier Transform Infrared. The modification of the CPE with the IIP (as a ionophore) resulted in an all-solid-state Cr(III)-selective sensor. However, the presence of appropriate amount of MWCNTs in the electrode composition was found to be necessary to observe Nernstian response. The optimised electrode composition was 76.7% graphite, 14.3% binder, 5% IIP, and 4% CNT. The proposed sensor exhibited Nernstian slope of 20.2 ± 0.2 mV decade?1 in the working concentration range of 1.0 × 10?6?1.0 × 10?1 mol L?1 (52 µg L?1–5.2 g L?1), with a detection limit of 5.9 × 10?7 mol L?1 (30.68 µg L?1) and a fast response time of less than 40 s. It displayed a stable potential response in the pH range of 2–5. It exhibited also high selectivity over some interfering ions. The proposed sensor was successfully applied for the determination of Cr(III) in real samples (sea, river water and soil).  相似文献   

17.
An electrochemical biosensor was fabricated by covalent modification of 5-hydroxytryptophan (5-HTP) on the surface of glassy carbon electrode (GCE). The electrode, denoted as 5-HTP/GCE, was characterized by X-ray photoelectron spectroscopy, cyclic voltammetry and differential pulse voltammetry. For comparison, tryptophan modified GCE (TRP/GCE) and serotonin modified GCE (5-HT/GCE) were prepared by the same method. It was found that electrocatalytic ability of these electrodes was in the order of 5-HTP/GCE?>?TRP/GCE?>?5-HT/GCE for the oxidation of dopamine (DA) and 5-HT. The sensor was effective to simultaneously determine DA and 5-HT in a mixture. It can resolve the overlapping anodic peaks into two well-defined voltammetric peaks at 0.24 and 0.39 V (versus SCE). The linear response is in the range of 5.0?×?10?7–3.5?×?10?5 mol L?1 with a detection limit of 3.1?×?10?7 mol L?1 for DA, and in the range of 5.0?×?10?6–3.5?×?10?5 mol L?1 with a detection limit of 1.7?×?10?6 mol L?1 for 5-HT (s/n?=?3), respectively.  相似文献   

18.
《Analytical letters》2012,45(2):339-351
Abstract

A stable poly(crystal-violet) (PCV) electroactive film was electrodeposited on a glassy carbon electrode (GCE). The redoxation of hydroquinone showed a pair of well-defined peaks on a PCV electrode with a potential difference of 30 mV, which is 120 mV less than that obtained on the GCE. At optimal conditions, the PCV electrode linearly responded to the hydroquinone in the range of 4 × 10?6 mol · L?1 to 3.2 × 10?3 mol · L?1 and a detection limit of 8 × 10?8 mol · L?1 was obtained. The separations of the oxidation peak potentials between hydroquinone and the coexisting o-hydroquinone and m-hydroquinonewere 100 mV and 430 mV, respectively, which allows their simultaneous determination. The detection of hydroquinone in artificial sewage water was demonstrated with satisfactory results.  相似文献   

19.
The poly-glutamic acid modified electrode has been prepared by direct electro-polymerization of D-glutamic acid on the surface of glassy carbon electrode. In pH 4.2, 0.1 mol L?1 HAc-NaAc buffer solution, the film modified electrode exhibited remarkable enhancement effect to the electrochemical responses of ferulic acid. The action mechanism was preliminarily explored. In the range of 2.0 × 10?7 to 1.0 × 10?5 mol L?1, and 1.0 × 10?5 to 3.0 × 10?4 mol L?1, the oxidation peak current has a linear relationship to the concentration, and the detection limit was estimated to be 7.0 × 10?8 mol L?1. This method has been adopted to detect trace amount of ferulic acid in Chinese proprietary medicine, and the recovery was from 97.8 to 102.4%.  相似文献   

20.
A new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of multiwalled carbon nanotubes and Amberlite IR-120. The anodic stripping voltammograms depend, to a large extent, on the composition of the modified electrode and the preconcentration conditions. Under optimum conditions, the anodic peak current at around ?0.57 V is linearly related to the concentration of Pb(II) in the range from 9.6?×?10?8 to 1.7?×?10?6 mol L?1 (R?=?0.998). The detection limit is 2.1?×?10?8 mol L?1, and the relative standard deviation (RSD) at 0.24?×?10?6 mol L?1 is 1.7% (n?=?6). The modified electrode was applied to the determination of Pb(II) using the standard addition method; the results showed average relative recoveries of 95% for the samples analysed.
Figure
A new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of MWCNT and Amberlite IR-120. The method showed a good linearity for 9.6?×?10?8 - 1.7?×?10?6 mol L?1 and detection limit of 2.1?×?10?8 mol L?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号