首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Analytical letters》2012,45(6):976-990
The electrochemical oxidation of riluzole was investigated using cyclic and linear sweep voltammetry. Under optimized conditions, current and concentration showed linear dependence in Britton Robinson buffer at pH 3.00 for boron doped diamond and pH 3.00 phosphate buffers for glassy carbon electrodes. Differential pulse and square wave voltammetry were used for the determination of riluzole levels in serum samples and pharmaceutical formulations. The limit of detections were found as 5.25 × 10?7 M and 8.26 × 10?8 M for glassy carbon electrode and 1.78 × 10?7 M and 8.42 × 10?8 M for boron-doped diamond electrodes, in serum samples, using differential pulse and square wave methods, respectively.  相似文献   

2.
Electrochemical oxidation of azoxystrobin, a systemic fungicide commonly used in agriculture to protect a wide variety of crops, was investigated using cyclic voltammetry with a boron‐doped diamond electrode (BDDE) in aqueous buffer solutions. Two pH independent irreversible anodic current peaks controlled mostly by diffusion were observed in wide pH range (2 to 12) at potentials +1600 mV and +2150 mV vs. saturated silver‐silver chloride electrode. Mechanism of the electrochemical oxidation was proposed and supported with high performance liquid chromatography/mass spectrometry analysis of azoxystrobin solutions electrolyzed on carbon fiber brush electrode. The main product of the first two‐electron oxidation step was identified as methyl 2‐(2‐{[6‐(2‐cyanophenoxy)pyrimidin‐4‐yl]oxy}phenyl)‐2‐hydroxy‐3‐oxopropanoate. An analytical method for the determination of azoxystrobin in water samples and pesticide preparation by differential pulse voltammetry with BDDE was developed. The method provides a wide linear dynamic range (3.0×10?7 to 2.0×10?4 mol L?1) with limit of detection 8×10?8 mol L?1. Accuracy of the method was evaluated by the addition and recovery method with recoveries ranging from 96.0 to 105.8 %. Interference study proved sufficient selectivity of the developed voltammetric method for the azoxystrobin determination in presence of azole fungicides as well as pesticides used to prevent the same crops.  相似文献   

3.
An electroanalytical method for the determination of morpholine, a corrosion inhibitor, was developed at a cathodically pretreated boron-doped diamond electrode (BDDE). The voltammetric response of morpholine at the BDDE in 0.1?mol L?1 KCl (pH 10) shows an irreversible oxidation process at approximately 1.3?V vs. Ag/AgCl in 3.0?mol L?1 KCl. Using cyclic voltammetry, the number of electrons involved in the morpholine electroxidation mechanism was found to be 1. The application of chronoamperometry showed that the apparent diffusion coefficient (D0) was 2.99?×?10?6 cm2 s?1. Using square wave voltammetry under the optimized conditions (frequency of 30.0?Hz, pulse amplitude of 100?mV and step potential of 20?mV at pH 10.0), the developed method provided limits of detection and quantification of 2.1 and 6.9?mg L?1, respectively, with a linear range from 5.0 to 100.0?mg L?1 (r?=?0.991). Intraday (n?=?10) and interday (two consecutive day) precision values assessed as the relative standard deviation for solutions containing 30.0, 60.0, and 90.0?mg L?1 of morpholine were from 0.41 to 5.86% and 0.92 to 3.19%, respectively. The feasibility of the method for the interference-free determination of morpholine was verified by the analysis of synthetic boiler water samples containing CaCO3, Na2SO3, Na3PO4, FeCl3, and humic acid as organic matter. In addition, hydrazine was added as a possible interfering compound because of its widespread use in corrosion inhibition. Recovery values from 90.9 to 109.4% were obtained in the synthetic boiler water, thereby attesting to the accuracy of the method.  相似文献   

4.
The electrochemical properties of methylisothiazolinone (MIT), the most widely used preservative, were investigated by cyclic (CV) and differential pulse voltammetry (DPV) to develop a new method for its determination. To our knowledge, this is the first demonstration of a voltammetric procedure for the determination of MIT on a boron-doped diamond electrode (BDDE) in a citrate–phosphate buffer (C-PB) environment. The anodic oxidation process of methylisothiazolinone, which is the basis of this method, proved to be diffusion-controlled and proceeded with an irreversible two-electron exchange. The radical cations, as unstable primary products, were converted in subsequent chemical reactions to sulfoxides and sulfones, and finally to more stable final products. Performed determinations were based on the DPV technique. A linear calibration curve was obtained in the concentration range from 0.7 to 18.7 mg L−1, with a correlation coefficient of 0.9999. The proposed procedure was accurate and precise, allowing the detection of MIT at a concentration level of 0.24 mg L−1. It successfully demonstrated its suitability for the determination of methylisothiazolinone in household products without the need for any separation steps. The proposed method can serve as an alternative to the prevailing chromatographic determinations of MIT in real samples.  相似文献   

5.
《Analytical letters》2012,45(5-6):449-459
Based on the study of voltammetric behavior of carcinogenic 1-nitropyrene (1-NP), 1-aminopyrene (1-AP), and 1-hydroxypyrene (1-HP), optimum conditions have been found for the determination of these analytes by differential pulse voltammetry (DPV) at a boron-doped diamond film electrode. The optimum medium was methanol-Britton–Robinson buffer (BR buffer) pH 3.0 (70:30) for 1-NP and 1-AP, and methanol-BR buffer pH 5.0 (70:30) for 1-HP. Concentration dependences of the DPV response were measured in the range 1 · 10?6–1 · 10?4 mol dm?3 (R = ?0.9998) with the limit of detection (LOD) 3 · 10?7 mol dm?3 for 1-NP, 1 · 10?7–1 · 10?5 mol dm?3 (R = 0.9971) with LOD 6 · 10?8 mol dm?3 for 1-AP, and 1 · 10?7–1 · 10?5 mol dm?3 (R = 0.9934) with LOD 1 · 10?7 mol dm?3 for 1-HP. Simultaneous determination of 1-NP and 1-AP in a mixture was tested in the methanol-BR buffer pH 3.0 (70:30) medium as well. The content of 1-AP in the concentration range from 1 · 10?6 to 1 · 10?4 mol dm?3 had no effect on the sensitivity of the determination of 1-NP, and vice versa. Due to the close peak potentials of 1-AP and 1-HP, the direct determination of their mixture using voltammetric methods is impossible.  相似文献   

6.
《Analytical letters》2012,45(10):1697-1711
This paper examines the electrochemical oxidation of terbinafine with the boron doped diamond and glassy carbon electrodes. The studies were performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square-wave voltammetry (SWV). The supporting electrolytes, solution pH, the range of potentials, and the scan rates were optimized. Terbinafine was irreversibly oxidized in all electrolytes, yielding well-defined peaks in the positive potential range. The peak potential shifted towards less positive values as the solution pH increased. Voltammetric determination of terbinafine was performed under the optimized conditions. Using the boron doped diamond electrode, a linear relationship between current and concentration was obtained between 5.44 × 10?7 and 5.18 and 10?6 mol/L with SWV and between 7.75 · 10?7 and 8.55 · 10?6 mol/L by DPV. At the glassy carbon electrode, a linear relationship between 7.75 · 10?7 and 8.55 · 10?6 mol/L was obtained by SWV and between 7.75 · 10?7 and 1.05 · 10?5 mol/L by DPV. The sensitivity, precision, and selectivity of the procedures were evaluated. In order to check the practical application of the developed methods, the concentration of terbinafine was determined in pharmaceutical preparations.  相似文献   

7.
The present work describes the first electrochemical investigation and a simple, rapid and modification‐free electroanalytical methodology for quantification of hordenine (a potent phenylethylamine alkaloid) using a boron‐doped diamond electrode. At optimized square‐wave voltammetric parameters, the observed oxidation peak current in 0.1 M HClO4 at +1.33 V (vs. Ag/AgCl) increased linearly from 5.0 to 100 μg mL?1 (3.0×10?5–6.1×10?4 M), with detection limit of 1.3 μg mL?1 (7.8×10?6 M). The applicability of the developed method was tested with the determination of hordenine in the commercial dietary supplement formulations.  相似文献   

8.
Dilek Kul  Bengi Uslu 《Talanta》2010,82(1):286-630
Ziprasidone is a psychotropic agent used for the treatment of schizophrenia. Its oxidation was investigated electrochemically at boron-doped diamond and glassy carbon electrodes using cyclic, differential pulse, and square wave voltammetry. The dependence of the peak current and peak potentials on pH, concentration, nature of the buffer, and scan rate were examined. The process was diffusion and adsorption controlled for boron-doped diamond and glassy carbon electrodes, respectively. The possible mechanism of oxidation was discussed with some model compounds that have indole and piperazine oxidations. A linear response was obtained between 8 × 10−7 and 8 × 10−5 M for the first peak in acetate buffer (pH 5.5) and between 2 × 10−6 and 2 × 10−4 M for the second peak in 0.1 M H2SO4 with boron-doped diamond electrode for differential pulse and square wave voltammetric techniques. The reproducibility and accuracy of the proposed methods were found between 0.31 and 1.20, 99.27 and 100.22, respectively. The recovery studies were also achieved to check selectivity and accuracy of the methods. The proposed methods were applied for the determination of ziprasidone from pharmaceutical dosage forms and human serum samples without any time-consuming extraction, separation, evaporation or adsorption steps prior to drug assay except precipitation of the proteins using acetonitrile. The results were statistically compared with those obtained through an established LC-UV technique, no significant differences were been found between the voltammetric and LC methods.  相似文献   

9.
《Analytical letters》2012,45(6):1177-1195
Abstract

The electrooxidative behavior and determination of Verapamil HCl, one of the class IV anti‐arrhythmic agent, on a glassy carbon disc electrode were investigated for the first time by using cyclic, differential pulse (DPV), and Osteryoung square wave voltammetry (OSWV). Verapamil showed an irreversible oxidation behavior at all pH values and buffers studied. From the electrochemical response, the main oxidation step was found to be related to the methoxy group on the phenyl ring. DPV and OSWV were used to generate peak current versus concentration curves for verapamil. A linear response was obtained in the range comprised between 8×10?7 and 1×10?4 M for both techniques with detection limit of 1.61×10?7 M for DPV and 1.33×10?7 M for OSWV. The repeatability and reproducibility of the methods for all investigated media (such as supporting electrolyte and serum samples) were determined. Precision and accuracy were also checked in all media. The methods were proposed for the determination of verapamil in dosage forms adopting both DPV and OSWV modes. The methods were extended to the in vitro determination of verapamil in spiked serum samples. No electroactive interferences from the endogenous substances were found in human plasma.  相似文献   

10.
《Electroanalysis》2017,29(7):1691-1699
The simultaneous voltammetric determination of melatonin (MT) and pyridoxine (PY) has been carried out at a cathodically pretreated boron‐doped diamond electrode. By using cyclic voltammetry, a separation of the oxidation peak potentials of both compounds present in mixture was about 0.47 V in Britton‐Robinson buffer, pH 2. The results obtained by square‐wave voltammetry allowed a method to be developed for determination of MT and PY simultaneously in the ranges 1–100 μg mL−1 (4.3×10−6–4.3×10−4 mol L−1) and 10–175 μg mL−1 (4.9×10−5–8.5×10−4 mol L−1), with detection limits of 0.14 μg mL−1 (6.0×10−7 mol L−1) and 1.35 μg mL−1 (6.6×10−6 mol L−1), respectively. The proposed method was successfully to the dietary supplements samples containing these compounds for health‐caring purposes.  相似文献   

11.
An effective electrochemical sensor was constructed using an unmodified boron-doped diamond electrode for determination of genistein by square-wave voltammetry. Cyclic voltammetric investigations of genistein with HClO4 solution indicated that irreversible behavior, adsorption-controlled and well-defined two oxidation peaks at about +0.92 (PA1) & +1.27 V (PA2). pH, as well as supporting electrolytes, are important in genistein oxidations. Quantification analyses of genistein were conducted using its two oxidation peaks. Using optimized experiments as well as instrumental conditions, the current response with genistein was proportionately linear in the concentrations range of 0.1 to 50.0 μg mL−1 (3.7×10−7−1.9×10−4 mol L−1), by the detection limit of 0.023 μg mL−1 (8.5×10−8 mol L−1) for PA1 and 0.028 μg mL−1 (1.1×10−7 mol L−1) for PA2 in 0.1 mol L−1 HClO4 solution (in the open circuit condition at 30 s accumulation time). Ultimately, the developed method was effectively applied to detect genistein in model human urine samples by using its second oxidation peak (PA2).  相似文献   

12.
An electrochemical method for the simultaneous determination of benzene, toluene and xylenes (BTX) in water was developed using square‐wave voltammetry (SWV). The determination of BTX was carried out using a cathodically pre‐treated boron‐doped diamond electrode (BDD) using 0.1 mol L?1 H2SO4 as supporting electrolyte. In the SWV measurements using the BDD, the oxidation peak potentials of the total xylenes‐toluene and toluene‐benzene couples, present in ternary mixtures, display separations of about 100 and 200 mV, respectively. The attained detection limits for the simultaneous determination of benzene, toluene and total xylenes were 3.0×10?7, 8.0×10?7 and 9.1×10?7 mol L?1, respectively. The recovery values taken in ternary mixtures of benzene, toluene and total xylenes in aqueous solutions are 98.9 %, 99.2 % and 99.4 %, respectively.  相似文献   

13.
《Analytical letters》2012,45(7):1341-1357
Ezetimibe is the first of a new class of drugs that selectively inhibits cholesterol absorption in the small intestine and reduces plasma LDL cholesterol. In this study, electrochemical oxidation of ezetimibe was investigated on carbon based electrodes and a single and irreversible peak at both electrodes was observed. A linear response was detected between 2 × 10?6 and 8 × 10?5 M with glassy carbon electrode and between 2 × 10?6 and 2 × 10?4 M with a boron-doped diamond electrode in 0.1 M H2SO4 supporting electrolyte. The proposed methods were successfully applied for the determination of ezetimibe from pharmaceutical dosage forms and human serum samples.  相似文献   

14.
《Electroanalysis》2006,18(3):253-258
The anodic voltammetric behavior of carbaryl on a boron‐doped diamond electrode in aqueous solution is reported. The results, obtained by square‐wave voltammetry at 0.1 mol L?1 Na2SO4 and pH 6.0, allow the development of a method to determine carbaryl, without any previous step of extraction, clean‐up, preconcentration or derivatization, in the range 2.5–30.0×10?6 mol L?1, with a detection limit of 8.2±0.2 μg L?1 in pure water. The analytical sensitivity of this electrochemical method diminished slightly, from 3.07 mA mmol?1 L to 2.90 mA mmol?1L, when the electrolyte was prepared with water samples collected from two polluted points in an urban creek. In these conditions, the recovery efficiencies obtained were around 104%. The effect of other pesticides (fenthion and 4‐nitrophenol) was evaluated and found to exert a negligible influence on carbaryl determination. The square‐wave voltammetric data obtained for carbaryl were typical of an irreversible electrode process with mass transport control. The combination of square‐wave voltammetry and diamond electrodes is an interesting and desirable alternative for analytical determinations.  相似文献   

15.
《Electroanalysis》2005,17(9):800-805
The oxidation of thiourea (TU) at boron‐doped diamond (BDD) electrodes was investigated by the use of anodic voltammetry. The results indicated that the overall TU oxidation reaction is rather complicated and takes place via two steps: a slow electron‐transfer yielding the corresponding free radical, followed by a fast oxidation of this radical, prior to its dimerization. It was found that in acidic media the voltammetric response is suitable for analytical applications, and unlike glassy carbon (GC), BDD electrodes exhibit very low susceptibility to adsorption. The same conclusion was supported by the results of AC voltammetric measurements. Based upon the voltammetric peak for the first step of TU oxidation, a method is proposed for the determination of this compound in the micromolar concentration range. The analytical performance characteristics of the method are comparable to those reported for TU determination by the use of platinum electrodes or enzyme‐modified platinum electrodes.  相似文献   

16.
Uslu B  Topal BD  Ozkan SA 《Talanta》2008,74(5):1191-1200
The anodic behavior and determination of pefloxacin on boron-doped diamond and glassy carbon electrodes were investigated using cyclic, linear sweep, differential pulse and square wave voltammetric techniques. In cyclic voltammetry, pefloxacin shows one main irreversible oxidation peak and additional one irreversible ill-defined wave depending on pH values for both electrodes. The results indicate that the process of pefloxacin is irreversible and diffusion controlled on boron-doped diamond electrode and irreversible but adsorption controlled on glassy carbon electrode. The peak current is found to be linear over the range of concentration 2 × 10−6 to 2 × 10−4 M in 0.5 M H2SO4 at about +1.20 V (versus Ag/AgCl) for differential pulse and square wave voltammetric technique using boron-doped diamond electrode. The repeatability, reproducibility, precision and accuracy of the methods in all media were investigated. Selectivity, precision and accuracy of the developed methods were also checked by recovery studies. The procedures were successfully applied to the determination of the drug in pharmaceutical dosage forms and humans serum samples with good recovery results. No electroactive interferences from the excipients and endogenous substances were found in the pharmaceutical dosage forms and biological samples, respectively.  相似文献   

17.
N‐acetylcysteine (NAC) and gentamicin sulfate (GS) are biologically and pharmaceutically relevant thiol‐containing compounds. NAC is well known for its antioxidant properties, whereas GS is an aminoglycoside that is used as a broadband antibiotic. Both pharmaceuticals play a significant role in the treatment of bacterial infections by suppressing the formation of biofilms. According to the European Pharmacopeia protocol, GS is analyzed by high performance liquid chromatography (HPLC) using gold electrodes for electrochemical detection. Here, we report the electrochemical detection of these compounds at NH2‐terminated boron‐doped diamond electrodes, which show significantly reduced electrode passivation, an issue commonly known for gold electrodes. Cyclic voltammetry experiments performed for a period of 70 minutes showed that the peak current decreased only by 1.6 %/7.4 % for the two peak currents recorded for GS, and 6.6 % for the oxidation peak of NAC, whereas at gold electrodes a decrease in peak current of 14.2 % was observed for GS, and of 64 %/30 % for the two peak currents of NAC. For their quantitative determination, differential pulse voltammetry was performed in a concentration range of 2–49 µg/mL of NAC with a limit of detection (LOD) of 1.527 µg/mL, and a limit of quantification (LOQ) of 3.624 µg/mL, respectively. The quantification of GS in a concentration range of 0.2–50 µg/mL resulted in a LOD of 1.714 µg/mL, and a LOQ of 6.420 µg/mL, respectively.  相似文献   

18.
Tetrachloroaurate(III) dissolved in dilute aqueous aqua regia is electrochemically reduced at boron-doped diamond electrodes to form gold metal. The reduction process is studied by voltammetric, SEM, and XPS techniques. Both the deposition of gold and the anodic stripping process are detected. The ratio of cathodic to anodic charge or stripping efficiency, Qanodic/Qcathodic, is shown to depend on the concentration of AuCl and on the pretreatment of the boron-doped diamond electrode surface. Cathodic pretreatment of the boron-doped diamond electrode considerably increases the rate for both deposition and stripping. In the presence of power ultrasound emitted from a glass horn system (24 kHz, 8 Wcm−2) the current associated with the reduction of AuCl is considerably enhanced and two components in the mass transport controlled limiting current are identified as (i) the deposition of gold onto the boron-doped diamond and (ii) the formation of colloidal gold.  相似文献   

19.
The electrochemical characteristics of multi-component phenolic pollutants, such as phenol (Ph), hydroquinone (HQ) and 4-nitrophenol (4-NP), were investigated on boron-doped diamond (BDD) film electrode by differential pulse voltammetry (DPV) technique. A simple and feasible platform was accordingly established for the direct and simultaneous determination of these three phenolic pollutants. Results showed that, Ph, HQ and 4-NP gave obvious oxidation peaks on BDD electrode at the potential of 1.24, 0.76 and 1.52 V, respectively. Each of them displayed good linear relationship between their oxidation peak currents and their corresponding concentrations in a rather wide range coexisting with one or two of the other phenolic pollutants. The detection limits of Ph, HQ and 4-NP were estimated to be as low as 1.82×10^-6, 1.67×10^-6 and 1.44×10^-6 mol·L^-1, respectively. Therefore, a promising direct and simultaneous electrochemical determination method of multi-component phenolic pollutants in wastewater samples was constructed successfully on BDD electrode with advantages being rapid, simple, convenient, sensitive, in situ and inexpensive.  相似文献   

20.
《Electroanalysis》2004,16(3):231-237
The electrochemical oxidation of antipsychotic drug amisulpride (AMS) has been studied in pH range 1.8–11.0 at a stationary glassy carbon electrode by cyclic, differential pulse and square‐wave voltammetry. Two oxidation processes were produced in different supporting electrolyte media. Both of the oxidation processes were irreversible and exhibited diffusion controlled. For analytical purposes, very resolved voltammetric peaks were obtained using differential pulse and square‐wave modes. The linear response was obtained in the range of 4×10?6 to 6×10?4 M for the first and second oxidation steps in Britton‐Robinson buffer at pH 7.0 and pH 3.0 (20% methanol v/v), respectively, using both techniques. These methods were used for the determination of AMS in tablets. The first oxidation process was chosen as indicative of the analysis of AMS in biological media. The methods were successfully applied to spiked human serum, urine and simulated gastric fluid samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号