首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
《Analytical letters》2012,45(6):1209-1226
Abstract

A sensitive method for the simultaneous spectrophotometric determination of Fe(II), Cu(II), Zn(II), and Mn(II) in mixtures has been developed with the aid of multivariate calibration methods, such as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS). The method is based on the spectral differences of the analytes in their complexation reaction with 4‐(2‐pyridylazo)‐resorcinol (PAR) and the use of full spectra with wavelengths in the range of 300–600 nm. It was found that both the spectral positive and negative bands obtained against the PAR blank, are proportional to the concentration for each metal complex. The obtained linear calibration concentration ranges are 0.025–0.6, 0.05–0.8, 0.025–0.8, and 0.05–0.8 µg ml?1 for Fe(II), Cu(II), Zn(II), and Mn(II), respectively, and the LODs for the four metal ions were found to be approximately 1–3×10?2 µg ml?1. The proposed method was applied to a verification set of synthetic mixtures of these four metal ions, with models built in three different wavelength ranges, i.e., 300–450, 450–600, and 300–600 nm, corresponding to the positive, negative bands and their combinations, respectively. It was shown that the PLS model for the 300–600 nm range gave the best results (RPET=6.9% and average recovery ~100%; cf. PCR: RPET=9.5% and average Recovery ~110%). This method was also successfully applied for the determination of the four metal ions in pharmaceutical preparations, chicken feedstuff, and water samples.  相似文献   

2.
A novel chelating resin (poly-Cd(II)-DAAB-VP) was prepared by metal ion imprinted polymer (MIIP) technique. The resin was obtained by one pot reaction of Cd(II)-diazoaminobenzene-vinylpyridine with cross-linker ethyleneglycoldimethacrylate (EGDMA). Comparing with non-imprinted resin, the poly-Cd(II)-DAAB-VP has higher adsorption capacity and selectivity for Cd(II). The distribution ratio (D) values for the Cd(II)-imprinted resin show increase for Cd(II) with respect to both D values of Zn(II), Cu(II), Hg(II) and non-imprinted resin. The relatively selective factor (αr) values of Cd(II)/Cu(II), Cd(II)/Zn(II) and Cd(II)/Hg(II), are 51.2, 45.6, and 85.4, which are greater than 1. poly-Cd(II)-DAAB-VP can be used at least 20 times without considerable loss of adsorption capacity. Based on poly-Cd(II)-DAAB-VP packed columns, a highly selective solid-phase extraction (SPE) and preconcentration method for Cd(II) from aqueous solution was developed. The MIIP-SPE preconcentration procedure showed a linear calibration curve within concentration range from 0.093 to 30 μg l−1. The detection limit and quantification limit were 0.093 and 0.21 μg l−1 (3σ) for flame atomic absorption spectrometry (FAAS). The relative standard deviation of the eleven replicate determinations was 3.7% for the determination of 10 μg of Cd(II) in 100 ml water sample. Determination of Cd(II) in certified river sediment sample (GBW 08301) demonstrated that the interfering matrix had been almost removed during preconcentration. The column was good enough for Cd(II) determination in matrixes containing components with similar chemical property such as Cu(II), Zn(II) and Hg(II).  相似文献   

3.
The persistence of widely used chelating agents EDTA and DTPA in nature has been of concern and there is a need for ligands to replace them. In a search for environmentally friendly metal chelating ligands for industrial applications, complex formation equilibria of N-bis[2-(1,2-dicarboxyethoxy)ethyl]aspartic acid (BCA6) with Cd(II), Hg(II) and Pb(II) in aqueous 0.1 M NaNO3 solution were studied at 25°C by potentiometric titration. Complexation was modeled and the stability constants of the different complexes were determined for each metal ion using the computer program SUPERQUAD. With all metal ions, stable ML4? complexes dominated the complex formation. The stabilities of Cd(II), Hg(II) and Pb(II) chelates of BCA6 are remarkably lower than those of EDTA and DTPA. Environmental advantages of the use of BCA6 instead of EDTA and DTPA are better biodegradability and lower nitrogen content with a possibility to save chemicals and process steps in pulp bleaching.  相似文献   

4.
Poly (acrylamide-acrylic acid-dimethylaminoethylmethacrylate), p(AM-AA-DMAEM) and Poly(acrylamide-acrylic acid)-ethylenediaminetetracetic acid disodium, p(AM-AA)-EDTANa2 were prepared by gamma radiation-induced template polymerization technique and used for the separation of Ga (III) from Cu (II), Ni (II), and Zn (II) in aqueous media. The effect of pH and contact time on the separation process was studied. The optimum pH value for the separation process is 3–3.5. The result shows that Ga (III) is first extracted while Cu (II), Ni (II) and Zn(II) are slightly extracted at this pH value. The recovery of metals using HCl, HNO3 and H2SO4 has been studied. The resins may be regenerated using 2M HCl solutions.   相似文献   

5.
Tri-nuclear cobalt and nickel complexes ([(CoL)2(OAc)2Co]?·?THF (I) and [(NiL)2(OAc)2(THF)2Ni]?·?THF (II)) have been synthesized by reaction of a new Salen-type bisoxime chelating ligand of 2,2′-[ethylenedioxybis(nitrilomethylidyne)]dinaphthol(H2L) with cobalt(II) acetate tetrahydrate or nickel(II) acetate tetrahydrate, respectively. Complexes I and II were characterized by elemental analyses, IR, TG-DTA and 1H-NMR etc. The X-ray crystal structures of I and II reveal that two acetate ions coordinate to three cobalt or nickel ions through M–O–C–O–M (M?=?Co or Ni) bridges and four μ-naphthoxo oxygen atoms from two [ML] units also coordinate to cobalt(II) or nickel(II). Complex I has two distorted square-pyramidal coordination spheres and an octahedral geometry around Co1. In complex II all three nickel ions are six-coordinate.  相似文献   

6.
Two new zinc(II) and cadmium(II) complexes, [Zn(PDT)2(NCS)2] (1) and [Cd((PDT)2I1.6(H2O)0.4(OH)0.4] · 0.4H2O (2) (“PDT” is the abbreviation of 3-(2-pyridyl)-5, 6-diphenyl-1,2,4-triazine), have been synthesized and characterized by elemental analysis, IR, 1H NMR spectroscopy, and studied by X-ray crystallography. Zinc(II) in 1 is six coordinate ZnN6. 2 is a co-crystal with cadmium(II) being 60% six-coordinated with a CdN4I2 environment and 40% seven-coordinated with a CdN4O2I environment. The supramolecular features in these complexes are guided/controlled by weak directional intermolecular S ··· π, C–H ··· π, C–H ··· I, and π ··· π interactions.  相似文献   

7.
Complexes of naturally occurring hydroxynaphtho-quinone, lapachol (2-hydroxy-3(3-methyl-2-buthenyl)-1,4-naphthoquinone = HL) with Co(II), Ni(II) and Cu(II) have been prepared by reaction of the corresponding acetates with the ligand (HL) in ethanol. The molecular and crystal structures were determined for [CoL2(EtOH)2] (1), [NiL2(EtOH)2] (2), and [CuL2(py)2] (3). In all cases the deprotonated lapachol behaves as chelating bidentate ligand. The complexes were also characterized by elemental analyses, cyclic voltammetry, and FAB-MS.  相似文献   

8.

In this study, 1,2-dihdroxyimino-3,7-di-aza-9,10-O-iso-propylidene decane (LH2 ) was synthesized starting from 1,2-O-iso-propylidene-4-aza-7-aminoheptane (RNH2 ) and anti-chloroglyoxime. Complexes of this ligand with Ni(II), Co(II), Cu(II) and UO2(VI) salts were prepared. Structures of the ligand and its complexes are proposed based on elemental analyses, IR, 13C and 1H NMR spectra magnetic susceptibility measurements and thermogravimetric analyses (TGA).  相似文献   

9.

In this study, 1,2-dihydroxyimino-3,7-di-aza-9,10-O-α-methyl benzal decane (LH2) was synthesized starting from 1,2-O-α-methyl benzal-4-aza-7-amino heptane (RNH2) and antichloroglyoxime. With this ligand, complexes were synthesized using Ni(II) and Cu(II) salts with a metal:ligand ratio of 1:2. However, the reaction of the ligand with salts of Zn(II) and Cd(II) gave products with metal:ligand ratio of 1:1. Structures of the ligand and its complexes are proposed based on elemental analyses, IR, 13C- and 1H-NMR spectra, magnetic susceptibility measurements and thermogravimetric analyses (TGA).  相似文献   

10.
Cobalt(II) complexes of N-methyl phenyl, 1-phenylpiperazyl, and morpholinyl dithiocarbamates have been synthesized and characterized by UV–Visible, FTIR, 1H-, 13C-NMR, and mass spectrometry. The spectroscopic data indicated that two ligands coordinated in bidentate chelating to the metal ion to form four-coordinate cobalt(II) complexes (13), which was confirmed by mass analysis (TOF MS ES+) of the complexes with m/z [M]+ = 450.98, 382.94, and 382.94 for 1, 2, and 3, respectively. Single crystal analysis of 2A and 3A show centrosymmetric mononuclear cobalt(III) bonded to three dithiocarbamate ligands forming a distorted octahedral geometry, indicating the cobalt(II) undergoes aerial oxidation to cobalt(III) during recrystallization. In addition, 2A crystallized with one solvated molecule of toluene. The redox behaviors of the complexes were studied by cyclic and square wave voltammetry in dichloromethane; the result revealed a metal centered redox process consisting of a one-electron quasi-reversible process assigned to Co(III)/Co(IV) oxidation and a corresponding Co(IV)/Co(III) reduction. Randles–Sevcik plots (anodic peak current versus the square root of the scan rate (Ip,a versus ν1/2)) for the redox couples revealed diffusion-controlled behavior.  相似文献   

11.
A 1-D copper(II) coordination polymer and two mononuclear copper(II) complexes of 4-formylbenzoate, [Cu(L)2(H2O)2] n (1), [Cu(L)2(D,L-cam)] (2), and [Cu(L)(bpy)2]?·?(ClO4)(H2O) (3) (HL?=?4-formylbenzoic acid, D,L-cam?=?D,L-camphoric diamine, bpy?=?2,2′-bipyridine), have been obtained from cleavage of C=N double bonds of a bis-Schiff-base compound. 4-Formylbenzoate exhibits bidentate chelating and bidentate μ 2-bridging modes by terminal carboxylic and aldehydic groups in 1-D coordination polymer 1. In contrast, it shows bidentate chelating in 2 and monodentate and bidentate bonding in 3 by its terminal carboxylic group where the aldehydic group does not coordinate. Offset π–π stacking interactions and two types of 8-membered hydrogen-bonding rings are found between neighboring molecules of the copper(II) complexes.  相似文献   

12.
A new chelating matrix has been prepared by immobilising sulfanilamide (SA) on silica gel (SG) surface modified with 3-chloropropyltrimethoxysilane as a sorbent for the solid-phase extraction (SPE) Cu(II), Zn(II) and Ni(II). The determination of metal ions in aqueous solutions was carried out by inductively coupled plasma optical emission spectrometry (ICP-OES). Experimental conditions for effective sorption of trace levels of Cu(II), Zn(II) and Ni(II) were optimised with respect to different experimental parameters using the batch and column procedures. The presence of common coexisting ions does not affect the sorption capacities. The maximum sorption capacity of the sorbent at optimum conditions was found to be 34.91, 19.07 and 23.62 mg g?1 for Cu(II), Zn(II) and Ni(II), respectively. The detection limit of the method defined by IUPAC was found to be 1.60, 0.50 and 0.61 µg L?1 for Cu(II), Zn(II) and Ni(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was 4.0% (n = 8). The method was applied to the recovery of Cu(II), Zn(II) and Ni(II) from the certified reference material (GBW 08301, river sediment) and to the simultaneous determination of these cations in different water samples with satisfactory results.  相似文献   

13.
Abstract

A novel dioxime, 1,2 dihydroxyimino-3,7-diaza-9,10-O-benzaloctane (LH2) was prepared by reaction of l,2-0-benzylidene-4-aza-7-aminoheptane and anti-phenylchloroglyoxime in absolute ethanol. Mononuclear complexes with a metal-ligand ratio of 1:2 were prepared with Co(II), Cu(II) and Ni(II). To elucidate the structures of the ligand and complexes, elemental analyses, IR, 1H NMR and 13C NMR spectral data and magnetic susceptibility measurements have been examined.  相似文献   

14.
《Analytical letters》2012,45(9):1735-1747
Abstract

A new chelating resin has been synthesized by introducing a quinaldinic acid amide group into styrenedivinyl benzene (8%) copolymer beads. The resin is stable in fairly strong acids or alkali and has been characterized by elemental analysis for nitrogen and from i.r. spectra. The water regain value is 0.37g/g. The sorption patterns of Na(I), K(I), Ca(II), Mg(II), Pb(II), Cu(II), Ni(II), Zn(II), Cd(II), Hg(II) and Fe(III) on the chelating resin have been studied as a function of pH. The resin selectively sorbs Hg(II) ever a wide pH-range of 2.5–7.6 with high efficiency. The maximum exchange capacity for Hg(II) is 1.98 mmols g?1 at pH 5.5. Over 99% of Hg(II) sorbed has been recovered by using 10% thiourea in 1M HClO4 both by batch and column operations. The has been utilized in the preconcentration and recovery of Hg(II) from industrial and laboratory waste water.  相似文献   

15.
2-Dimethylaminoethanol (dmea) reacted with tetraaqua-bis(saccharinato)cobalt(II) and -zinc(II) in n-butanol to yield the new complexes cis-[Co(sac)2(dmea)2] (1), and cis-[Zn(sac)2(dmea)2] (2) (sac?=?saccharinate). The complexes were characterized by elemental analyses, IR spectroscopy, DTA-TG and X-ray crystallography. Both complexes are isomorphous and crystallize in the monoclinic space group P21/c. The cobalt(II) and zinc(II) ions are coordinated by two neutral dmea ligands and two sac anions in a distorted octahedral environment. The dmea ligand acts as a bidentate N, O donor through the amine N and hydroxyl O atoms, while the sac ligand exhibits non-equivalent coordination, behaving as an ambidentate ligand; one coordinates to the metal via the carbonyl oxygen atom, while the other is N-bonded. The packing of the molecules in the crystals of both complexes is achieved by aromatic π(sac)–π(sac) stacking interactions, C–H?·?π interactions and weak intermolecular C–H?·?O hydrogen bonds involving the methyl groups of dmea and the sulfonyl oxygen atoms of the sac ligands. IR and UV spectra and thermal analysis are in agreement with the crystal structures.  相似文献   

16.
In the present work a new ligand, 2-(2-(phenyl(pyridin-2-yl)methyleneamino)ethylamino)ethanol (L), and its Zn(II) and Cd(II) complexes, [Zn(L)Br2] (1), [Cd(L)Br2] (2) and [Cd(L)I2] (3), have been synthesized and characterized by elemental analysis, FT-IR, Raman and 1H NMR spectroscopies as well as X-ray crystallography. All complexes are isostructural and their metal ions have distorted square pyramidal geometry with an MN3X2 (X: Br, I) environment. During the complexation process, the amine group of the ligand becomes a chiral center. In the solid-state, an R-configuration was observed in all three complexes. Furthermore, the molecules form intermolecular C–H?O, C–H?X and O–H?X (X: Br, I) hydrogen bonds in the solid-state.  相似文献   

17.
A new Cd(II) coordination polymer, [Cd(bpy)(oba)] n (1) (H2oba = 4,4′-oxybis(benzoic acid); bpy = 4,4′-bipyridine) has been synthesized under the hydrothermal conditions and structurally characterized by elemental analysis, IR spectrum and single crystal X-ray diffraction. X-ray diffraction analysis reveals that 1 features an interesting 3D framework with wavelike [Cd2(oba)2] n ribbons linked by 4,4′-bpy bridges. The oba ligand adopts chelating and chelating/bridging coordination modes. 1 displays strong fluorescent emission in the solid state at room temperature. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The synthesis and structure of two Cu(II) complexes, {[Cu2(L1)2]?·?DMF} n (1) and [CuL2(phen)] (2), are described. The dinegative hydrazones are obtained by deprotonation of both phenolic and amide moieties of N′-(5-bromo-2-hydroxybenzylidene)-3,5-dimethoxybenzohydrazide (H2L1) and N′-(2-hydroxybenzylidene)pyrazine-2-carbohydrazide (H2L2). In each complex the planar ligand binds the metal ion via phenolate-O, imine-N, and amide-O. Complex 1 is a polymer in which phenoxo-bridged binuclear Cu(II) units are further joined by equatorial–apical amide-O bridges. The Cu···Cu separations are 3.0306 and 3.8217?Å for the phenolate-O bridged pair and the amide-O bridged pair, respectively. Complex 2 is a monomer where chelating phen displays axial–equatorial bonding, with square-pyramidal Cu(II).  相似文献   

19.
Abstract

Our recent work on Cu(II) and VO(IV) interactions with lactobionic acid have shown1,2 that this sugar acid has an unusually high ability to coordinate both metal ions. The carboxyl group is not a very effective donor for cupric ions3,4 and metal interations with the set of the protonated hydroxyl groups should have considerable effects on complex stability. This high stability of the lactobionic acid complexes can lead to the involvement of this ligand in formation of ternary complexes with ligands such as aminosugars.3–6 Both ligands are important chelating agents for Cu(II) ions in medicine, agriculture and food chemistry.7–9 Since ternary complexes may play an important role in natural systems we have decided to follow complex formation in solutions containing lactobionic acid and one an aminosugar, D-glucosamine. The anchoring group in D(+)-glucosamine (2-amino-2-deoxy-D-glucose) is an amino group which is much more effective donor than carboxylate which acts as an anchor in sugar acids. Thus in our study we have used excess lactobionic acid to promote the formation of ternary complexes as major species in the solutions studied.  相似文献   

20.
The crystal and molecular structures of the organomercury(II) complexes [Hg(C6H5)(chtsc)], 1, and [Hg(C6H5C5H4N)(btsc)], 2, obtained from the reaction of phenylmercury(II) acetate with cyclohexanone thiosemicarbazone (Hchtsc) and that of [2-(pyridin-2′-yl)]phenyl]mercury(II) acetate with benzaldehyde thiosemicarbazone (Hbtsc), respectively, are described. Both 1 and 2 are monoclinic, space group C2/c. Complex 1 has a distorted T-shaped geometry {C-Hg-S, 161.91(10)°} and 2 can be considered to have a distorted seesaw geometry {C-Hg-S, 171.2(10)°}. In both complexes the ligands act as bidentate chelating anions bonding through azomethine N1 and thiolato S atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号