首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene is a two-dimensional sp2 hybridized carbon material that has attracted tremendous attention for its stimuli-responsive applications, owing to its high surface area and excellent electrical, optical, thermal, and mechanical properties. The physicochemical properties of graphene can be tuned by surface functionalization. The biomedical field pays special attention to stimuli-responsive materials due to their responsive abilities under different conditions. Stimuli-responsive materials exhibit great potential in changing their behavior upon exposure to external or internal factors, such as pH, light, electric field, magnetic field, and temperature. Graphene-based materials, particularly graphene oxide (GO), have been widely used in stimuli-responsive applications due to their superior biocompatibility compared to other forms of graphene. GO has been commonly utilized in tissue engineering, bioimaging, biosensing, cancer therapy, and drug delivery. GO-based stimuli-responsive platforms for wound healing applications have not yet been fully explored. This review describes the effects of different stimuli-responsive factors, such as pH, light, temperature, and magnetic and electric fields on GO-based materials and their applications. The wound healing applications of GO-based materials is extensively discussed with cancer therapy and drug delivery.  相似文献   

2.
Biomedical application of graphene derivatives have been intensively studied in last decade. With the exceptional structural, thermal, electrical, and mechanical properties, these materials have attracted immense attention of biomedical scientists to utilize graphene derivatives in biomedical devices to improve their performance or to achieve desired functions. Surfaces of graphene derivatives including graphite, graphene, graphene oxide and reduce graphene oxide have been demonstrated to pave an excellent platform for antimicrobial behavior, enhanced biocompatibility, tissue engineering, biosensors and drug delivery. This review focuses on the recent advancement in the research of biomedical devices with the coatings or highly structured polymer nanocomposite surfaces of graphene derivatives for antimicrobial activity and sterile surfaces comprising an entirely new class of antibacterial materials. Overall, we aim to highlight on the potential of these materials, current understanding and knowledge gap in the antimicrobial behavior and biocompatibility to be utilized of their coatings to prevent the cross infections.  相似文献   

3.
Polyhedral oligomeric silsesquioxanes (POSS) have attracted considerable attention in the design of novel organic-inorganic hybrid materials with high performance capabilities. Features such as their well-defined nanoscale structure, chemical tunability, and biocompatibility make POSS an ideal building block to fabricate hybrid materials for biomedical applications. This review highlights recent advances in the application of POSS-based hybrid materials, with particular emphasis on drug delivery, photodynamic therapy and bioimaging. The design and synthesis of POSS-based materials is described, along with the current methods for controlling their chemical functionalization for biomedical applications. We summarize the advantages of using POSS for several drug delivery applications. We also describe the current progress on using POSS-based materials to improve photodynamic therapies. The use of POSS for delivery of contrast agents or as a passivating agent for nanoprobes is also summarized. We envision that POSS-based hybrid materials have great potential for a variety of biomedical applications including drug delivery, photodynamic therapy and bioimaging.  相似文献   

4.
《先进技术聚合物》2018,29(2):687-700
Despite the significant efforts in the synthesis of new polymers, the mechanical properties of polymer matrices can be considered modest in most cases, which limits their application in demanding areas. The isolation of graphene and evaluation of its outstanding properties, such as high thermal conductivity, superior mechanical properties, and high electronic transport, have attracted academic and industrial interest, and opened good perspectives for the integration of graphene as a filler in polymer matrices to form advanced multifunctional composites. Graphene‐based nanomaterials have prompted the development of flexible nanocomposites for emerging applications that require superior mechanical, thermal, electrical, optical, and chemical performance. These multifunctional nanocomposites may be tailored to synergistically combine the characteristics of both components if proper structural and interfacial organization is achieved. The investigations carried out in this aim have combined graphene with different polymers, leading to a variety of graphene‐based nanocomposites. The extensive research on graphene and its functionalization, as well as polymer graphene composites, aiming at applications in the biomedical field, are reviewed in this paper. An overview of the polymer matrices adequate for the biomedical area and the production techniques of graphene composites is presented. Finally, the applications of such nanocomposites in the biomedical field, particularly in drug delivery, wound healing, and biosensing, are discussed.  相似文献   

5.
The spread of antimicrobial resistance and lesser development of new antibiotics have intensified the search for new antimicrobial and diagnostic vehicles. Carbon nanomaterials (CNMs), which broadly include carbon dots, carbon nanotubes, and graphene/graphene oxide nanostructures, have emerged as promising theranostic materials exhibiting, in many instances, potent antibacterial activities and diagnostic capabilities. Ease of synthesis, tunable physicochemical properties, biocompatibility, and diverse modes of action make CNMs a powerful class of theranostic nanomaterials. This review discusses recent studies illuminating innovative new CNMs and their applications in bacterial theranostics. We particularly emphasize the relationship between the structural parameters and overall chemical properties of CNMs and their biological impact and utilization. Overall, the expanding work on the development and use of CNMs in therapeutic, sensing, and diagnostic applications in the microbial world underscores the considerable potential of these nanomaterials.  相似文献   

6.
Graphene-based nanomaterials (GBNMs) are widely used in various industrial and biomedical applications. GBNMs of different compositions, size and shapes are being introduced without thorough toxicity evaluation due to the unavailability of regulatory guidelines. Computational toxicity prediction methods are used by regulatory bodies to quickly assess health hazards caused by newer materials. Due to increasing demand of GBNMs in various size and functional groups in industrial and consumer based applications, rapid and reliable computational toxicity assessment methods are urgently needed. In the present work, we investigate the impact of graphene and graphene oxide nanomaterials on the structural conformations of small hepcidin peptide and compare the materials for their structural and conformational changes. Our molecular dynamics simulation studies revealed conformational changes in hepcidin due to its interaction with GBMNs, which results in a loss of its functional properties. Our results indicate that hepcidin peptide undergo severe structural deformations when superimposed on the graphene sheet in comparison to graphene oxide sheet. These observations suggest that graphene is more toxic than a graphene oxide nanosheet of similar area. Overall, this study indicates that computational methods based on structural deformation, using molecular dynamics (MD) simulations, can be used for the early evaluation of toxicity potential of novel nanomaterials.  相似文献   

7.
Hydrogen-bonded organic frameworks (HOFs) are porous nanomaterials that offer exceptional biocompatibility and versatility for integrating proteins for biomedical applications. This minireview concisely discusses recent advancements in the chemistry and functionality of protein-HOF interfaces. It particularly focuses on strategic methodologies, such as the careful selection of building blocks and the genetic engineering of proteins, to facilitate protein-HOF interactions. We examine the role of enzyme encapsulation within HOFs, highlighting its capability to preserve enzyme function, a crucial aspect for applications in biosensing and disease diagnosis. Moreover, we discuss the emerging utility of nanoscale HOFs for intracellular protein delivery, illustrating their applicability as nanoreactors for intracellular catalysis and neuroprotective biorthogonal catalysis within cellular compartments. We highlight the significant advancement of designing biodegradable HOFs tailored for cytosolic protein delivery, underscoring their promising application in targeted cancer therapies. Finally, we provide a perspective viewpoint on the design of biocompatible protein-HOF assemblies, underlining their promising prospects in drug delivery, disease diagnosis, and broader biomedical applications.  相似文献   

8.
The coordination‐directed assembly of metal ions and organic bridging ligands has afforded a variety of bulk‐scale hybrid materials with promising characteristics for a number of practical applications, such as gas storage and heterogeneous catalysis. Recently, so‐called coordination polymers have emerged as a new class of hybrid nanomaterials. Herein, we highlight advances in the syntheses of both amorphous and crystalline nanoscale coordination polymers. We also illustrate how scaling down these materials to the nano‐regime has enabled their use in a broad range of applications including catalysis, spin‐crossover, templating, biosensing, biomedical imaging, and anticancer drug delivery. These results underscore the exciting opportunities of developing next‐generation functional nanomaterials based on molecular components.  相似文献   

9.
《中国化学快报》2023,34(6):107915
The biocompatibility and biodegradability of peptide self-assembled materials makes them suitable for many biological applications, such as targeted drug delivery, bioimaging, and tracking of therapeutic agents. According to our previous research, self-assembled fluorescent peptide nanoparticles can overcome the intrinsic optical properties of peptides. However, monochromatic fluorescent nanomaterials have many limitations as luminescent agents in biomedical applications. Therefore, combining different fluorescent species into one nanostructure to prepare fluorescent nanoparticles with multiple emission wavelengths has become a very attractive research area in the bioimaging field. In this study, the tetrapeptide Trp-Trp-Trp-Trp (WWWW) was self-assembled into multicolor fluorescent nanoparticles (TPNPs). The results have demonstrated that TPNPs have the blue, green, red and near infrared (NIR) fluorescence emission wavelength. Moreover, TPNPs have shown excellent performance in multicolor bioimaging, biocompatibility, and photostability. The facile preparation and multicolor fluorescence features make TPNPs potentially useful in multiplex bioanalysis and diagnostics.  相似文献   

10.
Failure of chemotherapy to the malignant tumor is usually induced by multidrug resistance (MDR). The development of anti-MDR agents for efficient drug delivery is of great importance in cancer therapy. Recent reports have demonstrated that some anticancer drugs could be readily self-assembled on some biocompatible nanomaterials covalently or non-covalently, which could effectively afford the sustained drug delivery for the target cancer cells and reduce the relevant toxicity towards normal cells and tissues. Thus these biocompatible nanomaterials may play an important role in the relevant biological and biomedical system. In this paper, we have explored the cytotoxic effect of anticancer drug daunorubicin on leukemia cancer cells in the absence and presence of different sized ZnO nanoparticles via fluorescence microscopy, UV-Vis absorption spectroscopy, electrochemical analysis as well as MTT assay. Meanwhile, the cytotoxicity suppression of daunorubicin together with different sized ZnO nanoparticles in the absence and presence of UV irradiation on leukemia cancer cells were also investigated using MTT assay. The results indicate that the combination of the different sized ZnO nanoparticles and daunorubicin under UV irradiation could have synergistic cytotoxic effect on leukemia cancer cells, indicating the great potential of ZnO nanoparticles in relevant clinical and biomedical applications.  相似文献   

11.
石墨烯量子点(GQDs)是一种新型碳基准零维材料,不但具有石墨烯的独特平面结构,同时具备碳点的量子限制效应和边界效应。GQDs具有独特的光学性质、低毒性、高荧光稳定性和高生物相容性,被广泛应用于检测、传感、催化、细胞成像、药物递送和污染治理等领域。GQDs的合成分为自上而下法和自下而上法,前者将大尺寸的石墨烯、石墨、碳材料切割成纳米级的量子点,后者使用不同的前驱体,通过水热法、热裂解法等方法合成石墨烯量子点。柠檬酸(CA)是一种重要的有机酸,室温下是白色结晶状粉末,是自下而上法合成GQDs的一种常用前驱体,近年来有许多关于以CA为前驱体合成不同GQDs的研究,以CA为前驱体合成的GQDs(CA-GQDs)在生物医药、荧光检测、成像等领域均有应用,具有较好的应用前景。对近年来基于CA的合成方法和具体应用进行了总结和回顾,旨在将现有CA-GQDs的相关成果尽可能汇总和展现,以对相关领域研究工作者提供一定参考,并对未来CA-GQDs较有前景的研究方向进行了展望。  相似文献   

12.
杜春保  胡小玲  张刚  程渊 《物理化学学报》2019,35(10):1078-1089
二维材料的超薄原子层结构使其具有独特的力学性能、导热导电性以及巨大的比表面积,在能源存储、催化、传感和生物医学等领域引起了国内外学者的广泛关注。将二维材料与具有生物活性的生物大分子相结合可以为开发具有优异电学、力学和生物学功能的特种功能材料提供新的方法和途径。近年来,科研工作者针对这一方向展开了广泛的研究,取得了一系列重要的成果,使二维材料与生物大分子的结合与应用成为了新的研究热点。本文综述了近年来二维材料和生物大分子之间的相互作用及应用的研究进展,重点介绍了二维材料与生物大分子在分子水平上的相互作用机理,还总结了基于二维材料与生物大分子之间的相互作用在工程、疾病治疗和抗菌中的应用,并对其未来的研究趋势提出了展望。  相似文献   

13.
Carbon nanodots (CNDs) are a developing branch of nanomaterials and nanoscience. This has generated much more interest in the field and class of biomedicine science by way of unique particular properties, such as high stability, great photoluminescence, easy green synthesis, and simple surface modification. Numerous applications, such as bioimaging, biosensing, and treatment, have made use of CNDs. This review describes the most recent developments in CND research and talks about major changes in the understanding of CNDs and their prospects as biomedical tools. The importance of this work lies in the ability of CNDs to overcome many of the limitations associated with traditional materials used in biomedicine, such as toxicity, poor biocompatibility, and limited functionality. Furthermore, the use of CNDs as drug carriers, imaging agents, and sensors has shown great potential in improving the diagnosis and treatment of various diseases. The novelty of this work lies in the diversity of approaches used in the synthesis and functionalization of CNDs, and the unique properties of CNDs that make them versatile tools for biomedicine. In particular, the ability to tune the size, shape, and surface chemistry of CNDs allows for the creation of tailored materials with specific biomedical applications. The review also discusses the challenges and future prospects of CNDs in biomedicine, including the need for standardization and optimization of CND synthesis, functionalization, and characterization protocols.  相似文献   

14.
Bioactive glasses (BGs) are being increasingly considered for biomedical applications. One convenient approach to utilize BGs in tissue engineering and drug delivery involves their combination with organic biomaterials in order to form composites with enhanced biocompatibility and biodegradability. In this work, mesoporous bioactive glass nanoparticles (MBGN) have been merged with polyhydroxyalkanoate microspheres with the purpose to develop drug carriers. The composite carriers (microspheres) were loaded with curcumin as a model drug. The toxicity and delivery rate of composite microspheres were tested in vitro, reaching a curcumin loading efficiency of over 90% and an improving of biocompatibility of different concentrations of MBGN due to its administrations through the composite. The composite microspheres were tested in terms of controlled release, biocompatibility and bioactivity. Our results demonstrate that the composite microspheres can be potentially used in biomedicine due to their dual effects: bioactivity (due to the presence of MBGN) and curcumin release capability.  相似文献   

15.
Chen  Weizhi  Zhen  Xu  Wu  Wei  Jiang  Xiqun 《中国科学:化学(英文版)》2020,63(5):648-664
Due to the formation of dynamic boronate ester bonds between phenylboronic acid(PBA) and 1,2-and 1,3-diols, PBAcontaining biomaterials show increasing applications in biomedical areas, including responsive nanobiomaterials for targeting delivery of chemical drugs, protein drugs, gene drugs and imaging agents in vitro and in vivo for detection of various bioactive molecules such as sialic acid, saccharides, adenosine triphosphate(ATP) and dopamine. With the specific reaction between PBA and sialic acid, which is overexpressed in many kinds of cancer cells, PBA has been used as a targeting moiety for tumortargeting drug delivery. Additionally, PBA as an electron acceptor affords nanomaterials Lewis acid-base coordination with electron donor atoms such as nitrogen and oxygen, which can be exploited for developing drug delivery systems with high drug loading. Furthermore, PBA-containing materials can stoichiometric consume reactive oxygen species(ROS) and show a nucleus targeting ability. This current review outlined PBA-containing biomaterials with various responsive abilities including sialic acid-targeting, sugars-binding, ROS-response, ATP-response, dopamine-binding, and nuclear targeting. On this basis, their biomedical applications were summarized.  相似文献   

16.
Boron nitride nanomaterials have attracted attention for biomedical applications, due to their improved biocompatibility when compared with carbon nanomaterials. Recently, graphene and graphene oxide nanosheets have been shown, both experimentally and computationally, to destructively extract phospholipids from Escherichia coli. Boron nitride nanosheets (BNNSs) have exciting potential biological and environmental applications, for example the ability to remove oil from water. These applications are likely to increase the exposure of prokaryotes and eukaryotes to BNNSs. Yet, despite their promise, the interaction between BNNSs and cell membranes has not yet been investigated. Here, all‐atom molecular dynamics simulations were used to demonstrate that BNNSs are spontaneously attracted to the polar headgroups of the lipid bilayer. The BNNSs do not passively cross the lipid bilayer, most likely due to the large forces experienced by the BNNSs. This study provides insight into the interaction of BNNSs with cell membranes and may aid our understanding of their improved biocompatibility.  相似文献   

17.
《中国化学快报》2020,31(6):1443-1447
Nanocomposite hydrogels based on carbon dots(CDs) and polymers have emerged as new materials with integrated properties of individual components,leading to their important applications in the field of soft nanomaterials.This perspective highlights recent advances in the development of nanocomposite hydrogels from CDs and polymers.We review the preparation methods of nanocomposite hydrogels based on CDs and polymers,and emerging applications of these nanocomposite hydrogels such as environmental remediation,energy storage,sensing,drug delivery and bioimaging.We conclude with the discussion of new research directions in the development of new type of nanocomposite hydrogels based on CDs and polymers.  相似文献   

18.
Since mechanical exfoliation of graphene in 2004, unprecedented scientific and technological advances have been achieved in the development of two-dimensional (2D) nanomaterials. These 2D nanomaterials exhibit various unique mechanical, physical and chemical properties on account of their ultrathin thickness, which are highly desirable for many applications such as catalysis, optoelectronics, energy storage/conversion, as well as disease diagnosis and therapeutics. In this review, we summarized recent progress on the design and fabrication of functional 2D nanomaterials capable of being applied for the cancer treatment including drug delivery, photodynamic therapy, and photothermal therapy. Their anticancer mechanisms were discussed in detail, and the related safety concerns were analyzed based on current research developments. This review is expected to provide an insight in the field of 2D nanostructured materials for anticancer applications.  相似文献   

19.
Lab-on-a-chip (LOC) platforms have become important tools for sample analysis and treatment with interest for DNA, protein and cells studies or diagnostics due to benefits such as the reduced sample volume, low cost, portability and the possibility to build new analytical devices or be integrated into conventional ones. These platforms have advantages of a wide set of nanomaterials (NM) (i.e. nanoparticles, quantum dots, nanowires, graphene etc.) and offer excellent improvement in properties for many applications (i.e. detectors sensitivity enhancement, biolabelling capability along with other in-chip applications related to the specificities of the variety of nanomaterials with optical, electrical and/or mechanical properties). This review covers the last trends in the use of nanomaterials in microfluidic systems and the related advantages in analytical and bioanalytical applications. In addition to the applications of nanomaterials in LOCs, we also discuss the employment of such devices for the production and characterization of nanomaterials. Both framed platforms, NMs based LOCs and LOCs for NMs production and characterization, represent promising alternatives to generate new nanotechnology tools for point-of-care diagnostics, drug delivery and nanotoxicology applications.  相似文献   

20.
Hybrids, produced by hybridization of proteins, peptides, DNA, and other new biomolecules with polymers, often have unique functional properties. These properties, such as biocompatibility, stability and specificity, lead to various smart biomaterials. This review mainly introduces biomolecule-polymer hybrid materials by reversible deactivation radical polymerization(RDRP), emphasizing reverse addition-fragmentation chain transfer(RAFT) polymerization, and nitroxide mediated polymerization(NMP). It includes the methods of RDRP to improve the biocompatibility of biomedical materials and organisms by surface modification. The key to the current synthesis of biomolecule-polymer hybrids is to control polymerization. Besides, this review describes several different kinds of biomolecule-polymer hybrid materials and their applications in the biomedical field. These progresses provide ideas for the investigation of biodegradable and highly bioactive biomedical soft tissue materials. The research hotspots of nanotechnology in biomedical fields are controlled drug release materials and gene therapy carrier materials. Research showed that RDRP method could improve the therapeutic effect and reduce the dosage and side effects of the drug.Specifically, by means of RDRP, the original materials can be modified to develop intelligent polymer materials as membrane materials with selective permeability and surface modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号