首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Analytical letters》2012,45(16):2566-2580
Multiwalled carbon nanotubes were modified by Fe3O4 nanoparticles with application for the preconcentration of metals. The modified materials were characterized by infrared spectroscopy, transmission electron microscopy, and X-ray diffraction. The Fe3O4 nanoparticle modified multiwalled carbon nanotubes were used as sorbents for the extraction of cadmium and lead from maca prior to analysis by flame atomic absorption spectrometry. The amount of nanoparticles, pH, adsorption time, coexisting ions, eluent solution, and reuse of the material were characterized to optimize the recoveries of the analytes. Under the optimum conditions, the calibration curves were linear from 0.05 to 20 milligrams per liter for cadmium and from 0.05 to 25 milligrams per liter for lead. The limits of detection were 0.32 and 0.57 micrograms per liter while the relative standard deviations were 2.1 and 1.9 percent, respectively. The method was employed for the determination of cadmium and lead in maca and recoveries between 94.8 and 105.6 percent were obtained.  相似文献   

2.
《Analytical letters》2012,45(11):1787-1801
A rapid and novel two-step dispersive liquid–liquid microextraction and dispersive micro-solid phase extraction method was established for the separation and enrichment of trace cadmium, nickel, and copper in food and environmental water prior to determination by inductively coupled plasma-mass spectrometry (ICP-MS). In the first microextraction step, carbon tetrachloride was employed to extract metal-diethyldithiocarbamate chelates from aqueous solution with ultrasound. In the following step, Fe3O4 magnetic nanoparticles were added and used to collect the analytes in the organic solvent. The sample pH, type and volume of extraction solvent, mass of magnetic nanoparticles, concentration of the chelating agent, concentration of sodium chloride, and sonication time were optimized. The linear dynamic range was from 0.01 to 20 micrograms per liter with correlation coefficients between 0.9990 and 0.9992. Enrichment factors were 78, 79, and 81 for cadmium, nickel, and copper, respectively. The limits of detection for cadmium, nickel, and copper were 0.007, 0.009, and 0.017 micrograms per liter, with relative standard deviations from 1.1 to 2.6 percent. The developed method was validated by the determination of cadmium, nickel, and copper in rice and mussel certified reference materials, food, and environmental water with satisfactory results.  相似文献   

3.
《Analytical letters》2012,45(16):2544-2552
A sensitive and rapid method was developed for the determination of seven phthalate esters in baby waterproof fabrics, decorated waterproof tarpaulins, and printed textiles by solid phase extraction followed by gas chromatography–mass spectrometry. The method showed good linearity with correlation coefficients between 0.9958 and 0.9999 and limits of quantification and detection from 23 to 274 micrograms per liter and 7 to 82 micrograms per liter, respectively. The maximum recoveries were between 96.2 and 100.9 percent with relative standard deviations from 1.06 to 6.87 percent. The protocol was applied to the determination of phthalate esters in textiles: the samples contained more than 0.1 percent phthalate esters, which exceed relevant standards.  相似文献   

4.
A new solid-phase extraction coupled with magnetic carrier technology was developed for extraction of bisphenol A (BPA) and diethylstilbestrol (DES) from water samples. The SPE sorbents, functionalized magnetic nanoparticles (Fe3O4@SiO2/β-CD, core/shell), were synthesized in a two-stage system. The material was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and a vibrating sample magnetometer. SPE extraction parameters, such as volume and pH of sample, adsorption time, and desorption conditions were optimized. Under selected conditions: 250 mL of water sample, 0.1 g of sorbents and elution with methanol (3 mL with 1% acetic acid), the extraction was completed in 25 min. SPE followed by HPLC was employed to determine BPA and DES in environmental samples. The developed method provided spiked recoveries of 80–105%, relative standard deviations of less than 7%, and LOD of BPA (20.0 ng/L) and DES (23.0 ng/L), respectively. The proposed method offered easy preparation of sorbents, rapid analysis, high enrichment yields, and reliable quantitative assay.  相似文献   

5.
In this work, a metal-organic framework derived nanoporous carbon(MOF-5-C) was fabricated and modified with Fe_3O_4 magnetic nanoparticles. The resulting magnetic MOF-5-derived porous carbon(Fe_3O_4@MOF-5-C) was then used for the magnetic solid-phase extraction of chlorophenols(CPs) from mushroom samples prior to high performance liquid chromatography–ultraviolet detection. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and N_2 adsorption were used to characterize the adsorbent. After experimental optimization, the amount of the adsorbent was chosen as 8.0 mg, extraction time as 10 min, sample volume as 50 m L, desorption solvent as 0.4 m L(0.2 mL×2)of alkaline methanol, and sample p H as 6. Under the above optimized conditions, good linearity for the analytes was obtained in the range of 0.8–100.0 ng g~(-1)with the correlation coefficients between0.9923 and 0.9963. The limits of detection(S/N = 3) were in the range of 0.25–0.30 ng g~(-1), and the relative standard deviations were below 6.8%. The result showed that the Fe3O4@MOF-5-C has an excellent adsorption capacity for the analytes.  相似文献   

6.
One‐monomer molecularly imprinted magnetic nanoparticles were prepared as adsorbents for selective extraction of bisphenol A from water in this study. A single bi‐functional monomer was adopted for preparation of the molecularly imprinted polymer, avoiding the tedious trial‐and‐error optimizations as traditional strategy. Moreover, bisphenol F was used as the dummy template for bisphenol A to avoid the interference from residual template molecules. These nanoparticles showed not only large adsorption capacity and good selectivity to the bisphenol A but also outstanding magnetic response performance. Furthermore, they were successfully used as magnetic solid‐phase extraction adsorbents of bisphenol A from various water samples, including tap water, river water, and seawater. The developed method was found to be much more efficient, convenient, and economical for selective extraction of bisphenol A compared with the traditional solid‐phase extraction. Separation of these nanoparticles can be easily achieved with an external magnetic field, and the optimized adsorption time was only 15 min. The recoveries of bisphenol A in different water samples ranged from 85.38 to 93.75%, with relative standard deviation lower than 7.47%. These results showed that one‐monomer molecularly imprinted magnetic nanoparticles had the potential to be popular adsorbents for selective extraction of pollutants from water.  相似文献   

7.
Polydopamine‐coated Fe3O4 magnetic nanoparticles synthesized through a facile solvothermal reaction and the self‐polymerization of dopamine have been employed as a magnetic solid‐phase extraction sorbent to enrich four phenolic compounds, bisphenol A, tetrabromobisphenol A, (S)‐1,1′‐bi‐2‐naphthol and 2,4,6‐tribromophenol, from environmental waters followed by high‐performance liquid chromatographic detection. Various parameters of the extraction were optimized, including the pH of the sample matrix, the amount of polydopamine‐coated Fe3O4 sorbent, the adsorption time, the enrichment factor of analytes, the elution solvent, and the reusability of the nanoparticles sorbent. The recoveries of these phenols in spiked water samples were 62.0–112.0% with relative standard deviations of 0.8–7.7%, indicating the good reliability of the magnetic solid‐phase extraction with high‐performance liquid chromatography method. In addition, the extraction characteristics of the magnetic polydopamine‐coated Fe3O4 nanoparticles were elucidated comprehensively. It is found that there are hydrophobic, π–π stacking and hydrogen bonding interactions between phenols and more dispersible polydopamine‐coated Fe3O4 in water, among which hydrophobic interaction dominates the magnetic solid‐phase extraction performance.  相似文献   

8.
A new method was developed for the simultaneous determination of three catecholamines in urine using aminophenylboronic acid functionalized magnetic nanoparticles extraction followed by high‐performance liquid chromatography with electrochemical detection. Novel aminophenylboronic acid functionalized magnetic nanoparticles were prepared by multi‐step covalent modification, and characterized by transmission electron microscopy, Fourier‐transformed infrared spectroscopy, X‐ray diffraction, and vibrating sample magnetometry. With the help of the high affinity between the boronate and cis‐diol group, the particles were used for the highly selective separation and enrichment of three major catecholamines, norepinephrine, epinephrine, and dopamine. Effects of the pH of the feed solution, the extraction time, the composition of the buffer solution, the amount of the magnetic particles, the elution conditions, and the recycling of aminophenylboronic acid functionalized magnetic nanoparticles were explored. Under the optimized conditions, 13–17‐fold enrichment factors were obtained. The linear ranges were 0.01–2.0 μg/mL for the studied analytes. The limits of detection and quantification were in the range of 2.0–7.9 and 6.7–26.3 ng/mL, respectively. The relative recoveries were in the range of 92–108%, with intraday and interday relative standard deviations lower than 6.8%. This method was successfully applied to analysis of catecholamines in real urine.  相似文献   

9.
《Analytical letters》2012,45(8):1355-1366
A rapid and efficient sample preparation method, which is called microwave-assisted microsolid phase extraction, was developed for the determination of endocrine disrupting chemicals in atmospheric particulate matter. The endocrine disrupting chemicals included bisphenol A, diethyl phthalate, dibutyl phthalate, and di(2-ethylhexyl) phthalate. The endocrine disrupting chemicals were isolated by microwave-assisted extraction following adsorption by copper(II) isonicotinate using microsolid phase extraction. The endocrine disrupting chemicals were subsequently determined by high performance liquid chromatography with an ultraviolet detector. The extraction was optimized for temperature, time, desorption time, and desorption solvent. Limits of detection (in the range of 2.0–8.5 nanograms per liter), limits of quantification (in the range of 6.6–28.0 nanograms per liter), and repeatability of the procedure (less than 10 percent) were established. Diethyl phthalate, diethyl phthalate, and di(2-ethylhexyl) phthalate were determined at values from 0.57 to 68.8 nanograms per cubic meter in atmospheric particulate matter collected from an urban area, a business center, and an industrial site in Dongguan, China. The concentration of bisphenol A was below the detection limit in these samples.  相似文献   

10.
《Analytical letters》2012,45(10):1604-1618
A sensitive and simple procedure based on the dispersive solid phase extraction with hydrophobic n-octyl-modified magnetic iron oxide nanoparticles as the sorbent was developed for the determination of ethoprophos, fenchlorphos, parathion methyl, chlorpyrifos, prothiofos, and azinphos methyl in environmental water samples. Dispersive liquid–liquid microextraction was coupled with dispersive solid-phase microextraction to enhance the dispersibility of the selected sorbent and extraction efficiency. The organophosphorus pesticides were detected using gas chromatography with a flame photometric detector. Under optimized conditions, this method achieved low method detection limit (0.02–0.10 microgram per liter), wide linearity (0.5–800 microgram per liter), high enrichment factors (122–143), good correlation coefficients (r = 0.9975–0.9997), and good repeatability (0.2–7.1 percent). This method was also successfully applied to analyze drinking water and surface water with good extraction efficiency (≥82 percent) and high degree of precision (≤5 percent). The results also indicated that the dispersibility of hydrophobic magnetic nanoparticles was enhanced with liquid–liquid microextraction without chemical modification of the magnetic iron oxide nanoparticles.  相似文献   

11.
A novel magnetic sulfonated covalent organic polymer was prepared for magnetic solid-phase extraction of protoberberine alkaloids. The magnetic sulfonated covalent organic polymer was rapidly synthesized under mild conditions. The physicochemical properties of the prepared materials were characterized by Fourier-transform infrared spectrometry, transmission electron microscopy, and X-ray photoelectron spectroscopy. Several extraction parameters were systematically investigated, including desorption time, pH of sample solution, acetonitrile content, acetic acid content in the eluent, extraction time, and sample volume. By coupling magnetic solid-phase extraction and high-performance liquid chromatography, an efficient and sensitive method for the extraction and determination of protoberberine alkaloids in complex samples was developed. The proposed method showed great linearity (r > 0.9989), low limits of detection (0.2–0.3 ng/ml), and high precision (relative standard deviations ≤ 5.74%). The proposed method was further applied to the analysis of protoberberine alkaloids in Cortex phellodendri and human plasma samples. The recoveries were 91.50%–110.31% with relative standard deviations less than 6.63% in Cortex phellodendri and 96.12%–111.20% with relative standard deviations lower than 5.56% in plasma samples.  相似文献   

12.
Zhang HF  Shi YP 《The Analyst》2012,137(4):910-916
A new solid-phase extraction mode for magnetic retrieval of chitosan combined with high-performance liquid chromatography-diode array detection was proposed for the pre-concentration and determination of flavonoids in green tea beverage samples. In the experiment, chitosan was used as sorbents for the extraction of target analytes; after completion of the extraction process, Fe(3)O(4) nanoparticles acted as carrier to retrieve chitosan from the sample solution. Some important parameters influenced extraction efficiency of flavonoids, including the extraction mode, amounts of chitosan, pH of sample solution, extraction time, salt addition, amounts of Fe(3)O(4) nanoparticles, desorption solvent and desroption time, were optimized. Under the optimum conditions, the recoveries of analytes done on samples spiked with the target analytes were between 96.4% and 108.6%; relative standard deviations ranged from 0.6% to 8.7%. The correlation coefficients varied from 0.9917 to 0.9988. The limits of detection ranged from 5.4 to 16.8 ng mL(-1) at a signal-to-noise ratio of 3. All four different brands of green tea beverage samples were successfully analyzed by the proposed method.  相似文献   

13.
寇立娟  梁荣宁 《色谱》2014,32(8):817-821
建立了羧基化碳纳米管固相萃取-液相色谱-串联质谱联用检测环境水体中四溴双酚A和双酚A的方法。比较了多壁碳纳米管、C60和羧基化多壁碳纳米管作为固相吸附剂对水体中四溴双酚A和双酚A的吸附效率。固相萃取浓缩后的样品经Thermo Scientific Hypersil C18色谱柱(150 mm×4.6 mm,3 μm)分离,采用串联质谱负离子模式进行检测。结果表明,四溴双酚A和双酚A在0.02~1.0 mg/L范围内具有良好的线性关系(r2≥0.99),空白样品中的检出限(S/N=3)分别为0.04 μg/L和0.2 μg/L。将所建立的方法应用于实际环境水体中四溴双酚A和双酚A的检测,添加回收率在82%~99%之间,精密度小于5.0%,该方法可用于复杂环境样品中痕量四溴双酚A和双酚A的检测。  相似文献   

14.
A magnetic solid-phase extraction method for the preconcentration of three organochlorine pesticides (OCPs) from water samples has been proposed, based on magnetic phosphatidylcholine (MPC) as adsorbents. The extraction procedure was carried out in a single step by stirring the mixture of MPC and water samples. Subsequently, the MPC was collected by an external magnetic field without additional centrifugation or filtration. The analytes were desorbed from the MPC and finally analysed by gas chromatography–tandem mass spectrometry. The influence of various parameters on OCPs recoveries was studied. Results show that phosphatidylcholine amount and extraction time were critical in enhancing extraction performance, and the presence of humic acid was shown to significantly reduce the extraction efficiency. The limits of detection obtained were in the range of 0.1–0.15 ng L?1. Recoveries of spiked water samples ranged from 76.2% to 101.5% with relative standard deviations varying from 3.8% to 7.7%. The proposed method was employed for analysis of pentachlorobenzene, α-hexachlorocyclohexane and β-endosulfan in the surface water from two rivers in northeast China.  相似文献   

15.
采用一步合成法制备磁性氧化石墨烯材料(GO-Fe_3O_4),将其用作磁性固相吸附剂对环境水样中的6种三嗪类除草剂进行萃取和富集,并与高效液相色谱-串联质谱法相结合进行测定。以扫描电镜和傅立叶红外光谱对合成材料进行了表征,并考察了GO-Fe_3O_4用量、萃取时间、水样的pH值及离子强度和解吸条件等因素对萃取效率的影响。6种三嗪类除草剂的检出限为0.1~1.0 ng/L,富集倍数可达616~902倍。将方法应用于苏州地区太湖水、运河水和护城河水等实际水样的分析,加标回收率为85.4%~117.6%,相对标准偏差为1.2%~10.0%。该方法操作简单快速,富集倍数较高,检出限低,可用于水样中痕量三嗪类除草剂残留的检测。  相似文献   

16.
Zhao G  Song S  Wang C  Wu Q  Wang Z 《Analytica chimica acta》2011,708(1-2):155-159
In this paper, a graphene-based Fe(3)O(4) magnetic nanoparticles (G-Fe(3)O(4) MNPs) was used as the adsorbent for the magnetic solid-phase extraction of some triazine herbicides (atrazine, prometon, propazine and prometryn) in environmental water samples followed by high performance liquid chromatography-diode array detection (HPLC-DAD). After the extraction, the adsorbent can be conveniently separated from the aqueous samples by an external magnet. The main factors influencing the extraction efficiency including the amount of the MNPs, the extraction time, the pH of sample solution, and desorption conditions were studied and optimized. Under the optimized experimental conditions, a good linearity was observed in the range of 0.1-50.0 ng mL(-1) for all the analytes, with the correlation coefficients (r) ranging from 0.9996 to 0.9999. The limits of detection of the method ranged between 0.025 and 0.040 ng mL(-1). Good reproducibility was obtained with the relative standard deviations below 5.2%. The developed method was applied to the analysis of the triazine herbicides in different water samples (lake, river and reservoir). The recoveries of the method were in the range between 89.0% and 96.2%.  相似文献   

17.
Huo SH  Yan XP 《The Analyst》2012,137(15):3445-3451
The unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities and the availability of in-pore functionality and outer-surface modification make metal-organic frameworks (MOFs) attractive for diverse analytical applications. However, integration of MOFs with magnets for magnetic solid-phase extraction for analytical application has not been attempted so far. Here we show a facile magnetization of MOF MIL-101(Cr) for rapid magnetic solid-phase extraction of polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. MIL-101 is attractive as a sorbent for solid-phase extraction of pollutants in aqueous solution due to its high surface area, large pores, accessible coordinative unsaturated sites, and excellent chemical and solvent stability. In situ magnetization of MIL-101 microcrystals as well as magnetic solid-phase extraction of PAHs was achieved simultaneously by simply mixing MIL-101 and silica-coated Fe(3)O(4) microparticles in a sample solution under sonication. Such MOF-based magnetic solid-phase extraction in combination with high-performance liquid chromatography gave the detection limits of 2.8-27.2 ng L(-1) and quantitation limits of 6.3-87.7 ng L(-1) for the PAHs. The relative standard deviations for intra- and inter-day analyses were in the range of 3.1-8.7% and 6.1-8.5%, respectively. The results showed that hydrophobic and π-π interactions between the PAHs and the framework terephthalic acid molecules, and the π-complexation between PAHs and the Lewis acid sites in the pores of MIL-101 play a significant role in the adsorption of PAHs.  相似文献   

18.
A series of low-cost hyper-crosslinked polymers were prepared by an easy one-step Friedel-Crafts reaction. The synthesized hyper-crosslinked polymers exhibited remarkably porous structure, large surface area, and hydroxyl groups, which can be employed as an ideal adsorbent material for novel sorbent-phase extraction techniques. Based on this, using hyper-crosslinked polymers as sorbent and coating, three novel extraction methods, including micro-solid-phase extraction, dispersive solid-phase extraction, and solid-phase microextraction, were explored and evaluated for simultaneous measurement of five endocrine-disrupting compounds (triclosan and bisphenol A, tetrabromobisphenol A, tetrabromobisphenol A bisallylether, and tetrabromobisphenol A bis(2,3-dibromopropyl ether)) in environment water prior to high-performance liquid chromatography–ultraviolet. The influence of experimental parameters on three extraction techniques such as extraction time, the amount of hyper-crosslinked polymers, extraction temperature, ionic strength, and desorption conditions were optimized. Three previously mentioned methods provided limits of detection ranging from 0.01 to 0.05 μg/L, and high recoveries (85–99%) with relative standard deviations of 1.7–5.6%. This study presented the merits and disadvantages of three proposed extraction methods and their potential for effective monitoring of hazardous pollutants in real water samples.  相似文献   

19.
A new method for separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction (SPE) with Bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES has been developed. The separation of the target analytes from the aqueous solution containing the target analytes and Bismuthiol-II-immobilized magnetic nanoparticles was simply achieved by applying external magnetic field. Optimal experimental conditions including pH, sample volume, eluent concentration and volume and co-existing ions have been studied and established. Under the optimal experimental conditions, the detection limits for Cr, Cu and Pb with enrichment factors of 96, 95 and 87 were found to be 0.043, 0.058 and 0.085 ng mL−1 and their relative standard deviations (R.S.D.s) were 3.5%, 4.6% and 3.7% (n = 5, C = 2 ng mL−1), respectively. The method was validated with certified reference material (GBW50009-88) of environmental water sample and the analytical results coincided well with the certified values. Furthermore, the method was successfully applied to the determination of target analytes in river and lake water samples. Compared with established methods, the proposed method is characterized with high enrichment factor, fast separation and low detection limits.  相似文献   

20.
In this study, the capability of the prepared polyaniline-coated Fe(3) O(4) nanoparticles for magnetic solid-phase extraction of three parabens from environmental wastewater, cream, and toothpaste samples is presented. Synthesized Fe(3) O(4) nanoparticles were coated with sulfate-doped polyaniline via polymerization of aniline in the presence of Fe(3) O(4) nanoparticles and sulfuric acid. Here, polyaniline-coated Fe(3) O(4) nanoparticles are presented as anion exchange sorbent, which extract anionic form of parabens via anion exchange with dopant of polyaniline. The experimental conditions affecting extraction efficiency were further studied and optimized. The experimental results showed that maximum extraction efficiency can be obtained at 70 mL sample solution of pH 8, extraction and desorption times of 2 and 1 min, respectively, 100 μL of 3% (v/v) acetic acid in acetonitrile as eluent, and 100 mg of the adsorbent. Under these conditions, the linear dynamic ranges were 0.5-100 μg/L with good correlation coefficients (0.998-0.999). The detection limits were in the range of 0.3-0.4 μg/L and the relative standard deviations were less than 2.4 (n = 5) for the three parabens. Finally, this fast and efficient method was further employed for determination of target analytes in cream, toothpaste, and environmental wastewater samples and satisfactory results were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号