首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Analytical letters》2012,45(9):2037-2050
Abstract

The technique of flow injection analysis was employed in the determination of hydrogen peroxide. the method was based on the chemiluminescence reaction of luminol with H2O2 which is catalyzed by horseradish peroxidase and enhanced by p-iodophenol. Hydrogen peroxide was linearly detected in the range 10?6M-10?4M by measuring the maximum intensity of light emitted. the detection limit is about 1 · 10?6M hydrogen peroxide. Transition metal cations at millimolar concentrations do not have any interference on the determination of hydrogen peroxide by FIA based on the enhanced chemiluminescent reaction. This technique is relatively rapid and simple, and permits measurement of up to 80 samples/hr using generally available equipment.  相似文献   

2.
《Analytical letters》2012,45(7):1215-1224
Abstract

A new amperometric biosensor for adenosine-5′-triphosphate (ATP) was designed using a platinum-dispersed carbon paste into which glycerol kinase and glycerol-3-phosphate oxidase were incorporated. The biosensor is based on the detection of hydrogen peroxide produced by the enzymatic reaction of ATP with glycerol and the subsequent oxidation of glycerol-3-phosphate. The use of the platinum-dispersed carbon paste electrode lowered the oxidation potential for hydrogen peroxide, permitting the sensitive detection of ATP at 0.4 V vs. Ag/AgCl. A linear response to ATP was observed in the concentration range of 1 x 10?5 to 2.5 x 10?3 M.

  相似文献   

3.
The method involves the reaction of 4,4′-{oxalyl bis[(trifluoromethylsulfonyl)imino]-ethylene}-bis(4-methylmorpholinium trifluoromethanesulfonate) with hydrogen peroxide in the presence of rhodamine-B. Precise measurements, with 1–3% relative standard deviation, can be made in both static and flow systems. In the flow system, the response to hydrogen peroxide is linear from 10?2 M hydrogen peroxide down to the limit of detection of 7 × 10?5 M.  相似文献   

4.
《Analytical letters》2012,45(14):2883-2899
ABSTRACT|The catalytic activity of various mimetic enzymes instead of the peroxidase have been investigated by 4-aminoantipyrine (4-AAP) and 2, 3, 4-trichlorophenol (TCP) to form a dye utilizing hydrogen peroxide as hydrogen acceptor. The different Chlorophenolic derivatives, which act as a substrate in β-CD-hemin-H2O2-4-AAP catalytic reaction, have been systematically studied.|Meanwhile, the relationship of structure-effect for the β-CD-hemin as catalyst, and chlorphenols as substrate has been respectively discussed. The mechanism of catalytic reaction has been investigated. The results showed that β-CD-hemin was the best mimetic enzyme for peroxidase among those tested and TCP was a good substrate for the determination of hydrogen peroxide with β-CD-hemin. The method for the determination of hydrogen peroxide was proposed using 4-AAP-TCP system with β-CD-hemin as catalyst. A linear calibration graph was obtained over the H2O2 concentration of 4.8×10-?8-7.7×10-?5M, and the relative standard deviation at a H2O2 concentration of 2.8×10-?5M was 2.5%. The apparent molar absorptivity of the chromogenic reaction for H2O2 was 1.54× 104 L.mol-?1.cm?1. Satisfactory results were obtained in the determination of H2O2 in synthetic samples by this method.

Also, the method was coupled with the glucose oxidation reaction to determination glucose in human serum.  相似文献   

5.
《Analytical letters》2012,45(17-18):1831-1837
Abstract

The electrochemical oxidation of hydrogen peroxide has been investigated using a modified carbon paste electrode, by incorporating iron phthalocyanine. This offers interesting properties due to the catalase like activity of the electrode.

The utilization of this type of electrode permits the quantitative determination of hydrogen peroxide at concentrations down to 5x10?5 M.  相似文献   

6.
《Analytical letters》2012,45(12):2373-2389
ABSTRACT

The performance of a first generation glucose amperometric biosensor based on the entrapment of glucose oxidase (GOx) within a net of copper electrodeposited onto activated glassy carbon electrode, is described. The copper electrodeposited offers an efficient electrocatalytic activity towards the reduction of enzymatically-liberated hydrogen peroxide, allowing for a fast and sensitive glucose quantification. The influence of the electrodeposition conditions (pH, potential, time, copper salt and enzyme concentrations) on the response of the bioelectrode was evaluated from the amperometric signals of hydrogen peroxide and glucose. The combination of copper electrodeposition with a nation membrane allows an excellent selectivity towards easily oxidizable compounds such as uric and ascorbic acids at an operating potential of -0.050 V. The response is linear up to 2.0 × 10?2 M glucose, the detection limit being 1.2 × 10?3 M.  相似文献   

7.
Sulphite (1–80 × 10?5 M) in formaldehyde-stabilized solutions is determined by injection into a flowing stream of pH 8.5 phosphate buffer, passing through a mini-column of sulphite oxidase immobilized on controlled-pore glass, with amperometric detection of the hydrogen peroxide produced. Sulphite oxidase (5–100 U l?) is determined by injection into a flowing stream of formaldehyde-stabilized 2 × 10?3 M sodium sulphite in pH 8.0 phosphate buffer; hydrogen peroxide is again monitored.  相似文献   

8.
Screening tests are described for the development of chemiluminescence systems (oxidizing systems) capable of detecting biological organic compounds. The light emission depends strongly on the oxidizing systems employed. Acidic permanganate system gives rise to light emission for many compounds, including catechols, catecholamines, triphenols and indoles. The following oxidizing systems led specifically to chemiluminescence for hydroquinone, adrenaline or phenylpyruvic acid: 10?1 M thiosulphate with 10?1 M sodium hydroxide and 10?4 M Ag (I), 0.3 % hydrogen peroxide with 10?3 M sodium hydroxide/50% acetonitrile and 10?4 M Fe (II), and 0.3% hydrogen peroxide with 10?2 M sodium hydroxide/10?2 M didodecyldimethylammonium bromide and 10?4 M Co(II), respectively.  相似文献   

9.
《Analytical letters》2012,45(5):875-886
Abstract

Platinum nanowires (PtNW) were prepared by an electrodeposition strategy using nanopore alumina template. The nanowires prepared were dispersed in chitosan (CHIT) solution and stably immobilized onto the surface of glassy carbon electrode (GCE). The electrochemical behavior of PtNW‐modified electrode and its application to the electrocatalytic reduction of hydrogen peroxide (H2O2) are investigated. The modified electrode allows low potential detection of hydrogen peroxide with high sensitivity and fast response time. As an application example, the glucose oxidase was immobilized onto the surface of PtNW‐modified electrode through cross‐linking by glutaric dialdehyde. The detection of glucose was performed in phosphate buffer at –0.2 V. The resulting glucose biosensor exhibited a short response time (<8 s), with a linear range of 10?5?10?2 M and detection limit of 5×10?6 M.  相似文献   

10.
《Analytical letters》2012,45(17):3147-3160
Abstract

The multiwalled carbon nanotube–nickel hydroxide composite film used to modify glassy carbon electrode was prepared and confirmed by transmission electron microscopy and cyclic voltammetry. The process and mechanism of film formation were discussed in detail. The electrode modified with the composite film exhibited good catalytic activity toward electrochemical oxidation of hydrogen peroxide in 0.1 mol/L sodium hydroxide solution. Various factors affecting the electrocatalytic activity of nickel hydroxide film were investigated. The anodic peak current increased with the increased concentration of hydrogen peroxide. The linear range for the determination of hydrogen peroxide was from 1.5 × 10?6 mol/L to 2.5 × 10?3 mol/L with the detection limit 6.1 × 10?7 mol/L (S/N = 3). And the proposed method was applied to the determination of hydrogen peroxide in disinfector with higher sensitivity and lower detection limit.  相似文献   

11.
A modified carbon electrode for the amperometric determination of hydrogen peroxide is described. By deposition of a 15-nm thick layer of a 40:60 mixture of palladium and gold on the surface of the electrode the overvoltages for both the oxidation and the reduction can be decreased by at least 800 mV. When applied as an electrochemical sensor in a flow-injection system, linear calibration graphs were obtained between 10?7 and 5 × 10?3 M hydrogen peroxide. The modified electrodes were stable for months.  相似文献   

12.
《Analytical letters》2012,45(14):1477-1488
Abstract

Cholesterol oxidase has been immobililzed on collagen films associated to an electrochemical sensor to form a “cholesterol electrode”. The electrode poised at a potential of + 650 my vs Ag/AgCl detects the hydrogen peroxide produced in the enzymatic reaction. This device presents a very high sensitivity and a wide range of linearity (10?7 M - 0.8.10?4 M). The use of a non enzymatic electrode associated with the enzymatic one allowed the detection and correction of electrochemical interferences when applied to human sera for free cholesterol determination.  相似文献   

13.
The hydrogen peroxide is oxidized at + 1.5 V vs. SCE at a glassy carbon electrode of the wall-jet type. The samples are diluted about 100 times in a dispersion coil before entering the amperometric detector. The calibration curve is linear from 10?4 to 1 M H2O2, when 5-μl samples are used. With 50-μl samples the detection limit decreases to 10?6 M H2O2. Neither metal ions (Cu2+, Zn2+, Ni2+, Al3+) up to 0.5 M nor changes in the sulfuric acid concentration of the samples between 0.1 and 1 M interfere with the hydrogen peroxide determination. About 75 samples can be analyzed per hour.  相似文献   

14.
《Analytical letters》2012,45(14):2725-2735
Abstract

A procedure for fabricating an enzyme electrode has been described based on the effective immobilization of horseradish peroxidase to an ultrathin titania layer–modified self‐assembled gold electrode. The resulting electrode exhibits excellent electrocatalytical activity to hydrogen peroxide in the presence of hydroquinone as a mediator. The analytical conditions were studied in detail by using an amperometric method. Under the optimized conditions, a detection limit of 7.1×10?7 mol l?1 and a linear response to hydrogen peroxide that ranged from 1×10?6 mol l?1 to 7.6×10?4 mol l?1 were obtained. The reproducibility and stability were examined with satisfactory results.  相似文献   

15.
Metal-catalyzed electroluminescence is generated at an oxide-covered aluminum electrode during the reduction of oxygen, potassium peroxodisulfate, and especially hydrogen peroxide in aqueous solutions. The feasibility of this electroluminescence for the determination of copper (5 × 10?9 M) and thallium (> 10?10 M) is demonstrated.  相似文献   

16.
Here is reported the novel determination of hydrogen peroxide by electrochemiluminescence using a chitosan–graphene composite film doped cadmium-tellurium quantum dot modified glassy carbon electrode. The cadmium-tellurium quantum dots were studied by absorption and fluorescence spectroscopy. Scanning electron microscopy and electrochemical impedance spectroscopy were used to characterize the structure morphology of the composite matrix. The electrochemiluminescence emission was linear with the concentration of hydrogen peroxide in the range of 3.5?×?10?7 to 1.1?×?10?5?M with a determination limit of 2.1?×?10?7?M. Furthermore, the modified electrode showed excellent reproducibility and stability.  相似文献   

17.
A new nanocomposite was developed by combination of nickel hexacyanoferrate nanoparticles (NiNP) and nano silver coated multiwalled carbon nanotubes (nano Ag-MWNTs). The NiNP/nano Ag-MWNTs nanocomposite was charactered by scanning electron microscopy (SEM). The NiNP/nano Ag-MWNTs nanocomposite modified glassy carbon (GC) electrode was used to investigate the electrochemical reduction of hydrogen peroxide. The results showed that NiNP and nano Ag-MWNTs provided the synergistic effect toward this process. The obtained NiNP/nano Ag-MWNTs/GC electrode showed a wide linear response range of 1 × 10?6 to 1 × 10?4 and 5 × 10?4 to 0.01 M hydrogen peroxide with correlation coefficients of 0.998 and 0.997, fast response time (2 s), and good selectivity toward the electrocatalytic reduction of hydrogen peroxide. The detection limit (S/N = 3) of hydrogen peroxide was 5 × 10?7 M.  相似文献   

18.
《Analytical letters》2012,45(9):2025-2038
Abstract

A simple and highly sensitive method to quantify the rates of production of phenoxyl radicals in enzyme reaction is described. This method employs the peroxidase‐catalyzed reaction between chlorophenols and hydroperoxide to generate phenoxyl free radicals, which can enhance dimerization of L‐tyrosine. The product, dityrosine, was monitored fluorometrically at the excitation/emission wavelength of 320/410 nm and the initial rate of accelerated‐accumulation of dityrosine represents the formation rate of phenoxyl free radicals. With this method, the phenoxyl radicals generated in oxidation of chlorophenols with hydrogen peroxide, catalyzed by horseradish peroxidase, were investigated. Phenoxyl radicals generated from as low as 5.0×10?9 M 2,4‐dichlorophenol, for example, can be readily detected with a relative standard deviation of 2.6% for 9 replicated determination. The detection limits of phenoxyl radicals produced by various chlorophenols are 4.2×10?9, 1.1×10?9, 1.0×10?10, 2.8×10?8, and 1.1×10?7 M for 2‐chlorophenol, 4‐chlorophenol, 2,4‐dichlorophenol, 2,4,6‐trichlorophenol, and 2,3,4,6‐tetrachlorophenol, respectively. The possible pathway of the reaction is proposed. The protocol is suitable for quantification of free radicals in enzyme reaction and shows promise in being applied to biological systems.  相似文献   

19.
A fluorimetric flow-injection procedure with a single reagent solution containing p-hydroxyphenylacetic acid, peroxidase and ammonia permits the determination of aqueous hydrogen peroxide in the range 10?8?10?4 M; 30–60 samples can be processed per hour. The method exhibits a wide linear range and is insensitive to sample pH within the range 2–6.  相似文献   

20.
A highly sensitive and selective glucose biosensor has been developed based on immobilization of glucose oxidase within mesoporous carbon nanotube–titania–Nafion composite film coated on a platinized glassy carbon electrode. Synergistic electrocatalytic activity of carbon nanotubes and electrodeposited platinum nanoparticles on electrode surface resulted in an efficient reduction of hydrogen peroxide, allowing the sensitive and selective quantitation of glucose by the direct reduction of enzymatically‐liberated hydrogen peroxide at ?0.1 V versus Ag/AgCl (3 M NaCl) without a mediator. The present biosensor responded linearly to glucose in the wide concentration range from 5.0×10?5 to 5.0×10?3 M with a good sensitivity of 154 mA M?1cm?2. Due to the mesoporous nature of CNT–titania–Nafion composite film, the present biosensor exhibited very fast response time within 2 s. In addition, the present biosensor did not show any interference from large excess of ascorbic acid and uric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号