首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(11):2285-2295
Abstract

Multi‐walled carbon nanotubes (MWNTs) were used as sorbent for flow injection (FI) on‐line microcolumn preconcentration coupled with flame atomic absorption spectrometry (FAAS) for determination of trace cadmium and copper in environmental and biological samples. Effective preconcentration of trace cadmium and copper was achieved in a pH range of 4.5–6.5 and 5.0–7.5, respectively. The retained cadmium and copper were efficiently eluted with 0.5 mol L?1 HCl for on‐line FAAS determination. The MWNTs packed microcolumn exhibited fairly fast kinetics for the adsorption of cadmium and copper, permitting the use of high sample flow rates up to at least 7.8 mL min?1 for the FI on‐line microcolumn preconcentration system without loss of the retention efficiency. With a preconcentration time of 60 sec at a sample loading flow rate of 4.3 mL min?1, the enhancement factor was 24 for cadmium and 25 for copper at a sample throughput of 45 h?1. The detection limits (3σ) were 0.30 and 0.11 µg L?1 for Cd and Cu, respectively. The precision (RSD) for 11 replicate measurements was 2.1% at the 10‐µg L?1 Cd level and 2.4% at the 10‐µg L?1 Cu level. The developed method was successfully applied to the determination of trace Cd and Cu in a variety of environmental and biological samples.  相似文献   

2.
《Analytical letters》2012,45(3):504-516
A novel method for separation and determination of rhodamine B in food samples is described. The work is based on the utilization of an ionic liquid loaded β-cyclodextrin cross-linked polymer coupled with high-performance liquid chromatography for the determination of rhodamine B. The inclusion interaction of the ionic liquid-β-cyclodextrin cross-linked polymer with rhodamine B was studied by FTIR. Under optimum conditions, the preconcentration factor achieved for this method was approximately 20. The linear range, detection limit, and relative standard deviation were 0.80 to 130.0 µg L?1, 0.09 µg L?1, and 0.66% (n = 3, concentration = 10.0 µg L?1), respectively. The technique was successfully applied for determination of rhodamine B in food samples.  相似文献   

3.
《Analytical letters》2012,45(4):632-646
A new solid phase extraction method based on the application of polyaniline as the sorbent and calmagite as the anionic chelating agent is reported for selective preconcentration of trace copper, prior to its determination by microsample injection system-flame atomic absorption spectrometry. The parameters that influence the extraction and chelate formation were optimized. The copper was retained on a polyaniline minicolumn at pH 4.0 and eluted with 2.0 mL of 3.0 mol L?1 nitric acid. Under the optimum conditions, the limit of detection, the relative standard deviation, and the preconcentration factor were 1.98 µg L?1, less than 5.4%, and 50 to 200, respectively. The method was validated through the analysis of certified reference water samples and standard addition measurements. Quantitative recoveries between 93.4% and 103.5% were obtained. The method was successfully applied to the determination of copper in water.  相似文献   

4.
In the existing study, a new vortex-assisted cloud point extraction (VA-CPE) method was developed for determination of low levels of thiosulfate in environmental waters at 632 nm by spectrophotometry. The method is selectively based on charge-transfer-sensitive ion-pair complex formation of Ag(S2O3)2 3?, which is produced by the reaction of thiosulfate with excess Ag+ ions with toluidine blue (3-amino-7-dimethylamino-2-methylphenazathionium chloride, TB+) and then its extraction into micellar phase of polyethylene glycol 4-tert-octylphenyl ether (Triton X-45) in presence of Na2SO4 as salting-out agent at pH 7.0. All the factors affecting complex formation and VA-CPE efficiency were optimized in detail. Under the optimized conditions, the linear calibration curves for thiosulfate were in the range of 0.2–120 and 5–180 µg L?1 with sensitivity improvement of 81-folds and 15-folds, respectively, as a result of efficient mass transfer obtained by CPE with and without vortex, while it changed in the range of 260–3600 µg L?1 without preconcentration at 642 nm. The limits of detection and quantification of the method for VA-CPE were found to be 0.05 and 0.22 µg L?1, respectively. The precision (expressed as the percent relative standard deviation) was in range of 2.5–4.8% (5, 10 and 25 µg L?1, n: 5). The method accuracy was validated by comparing the results to those of an independent 5,5′-dithiobis(2-aminobenzoic acid) (DTNB) method as well as recovery studies from spiked samples. It has been observed that the results are statistically in a good agreement with those obtained by DTNB method. Finally, the method developed was successfully applied to the preconcentration and determination of trace thiosulfate from environmental waters.  相似文献   

5.
A dispersive liquid–liquid microextraction (DLLME) method for separation/preconcentration of ultra trace amounts of Co(II) and its determination with FAAS was developed. The DLLME behavior of Co(II) using Aliquat 336-chloride as ion pairing agent was systematically investigated. The factors influencing the ion pair formation and extraction by DLLME method were optimized. Under the optimized conditions for 150 µL of extraction solvent (carbon tetrachloride), 1.5 mL disperser solvent (acetonitrile) and 5 mL of sample, the enrichment factor was 30. The detection limit was 5.6 µg L?1 and the RSD for replicate measurements of 1 mg L?1 was 1.32 %. The calibration graph using the preconcentration system for cobalt was linear from 40 to 400 µg L?1 with a correlation coefficient of 0.999. The proposed method was successfully applied for determination of cobalt in black tea, paprika and marjoram real samples.  相似文献   

6.
In the present study, multiwalled carbon nanotubes (MWCNTs) as solid phase extraction sorbent were developed for preconcentration of arsenic(V) species prior to graphite furnace atomic absorption spectrometry (GFAAS) determination. Arsenic(V) was selectively sorbed on the packed column with MWCNTs within a pH 9.5 in the presence of 2-(5-bromo-2-pyridylazo)-5-diethyl amino phenol (5-Br-PADAP). The adsorbed species was then desorbed with 1 mL of 2.0 M HNO3. Experimental parameters including pH, sample volume and flow rate, type, volume and concentration of eluent that influence the recovery of the arsenic(V) species were optimised. Under the optimised conditions, the calibration curve was linear in the range of 0.2–10.0 µg L?1 with detection limit of 0.016 µg L?1. The relative standard deviations (RSD) for seven replicate determinations at 1.0 µg L?1 level of arsenic was 6.69%. The proposed method was successfully applied to the determination of arsenic in water samples and certified reference material (NIST RSM 1643e).  相似文献   

7.
《Analytical letters》2012,45(10):1759-1771
A robust gold-coated solid-phase microextraction fiber was rapidly prepared on an etched stainless-steel wire based on chemical deposition. Gold(III) was reduced to produce a mechanically robust fiber with a stable coating. Subsequently, it was applied for solid-phase microextraction of five polycyclic aromatic hydrocarbons in water samples coupled to high performance liquid chromatography with an ultraviolet-visible detector. The preconcentration conditions were optimized, including extraction and desorption time, temperature, stirring rate, and ionic strength. Under the optimized conditions, the calibration graphs were linear in the range from 1 to 500 µg · L?1 for naphthalene and 0.20–500 µg · L?1 for phenanthrene, anthracene, fluoranthene, and pyrene. Limits of detection were between 0.016 and 0.22 µg · L?1 (signal-to-noise ratio = 3). The analysis of water samples showed that the recoveries ranged from 86.0% to 112.9% with relative standard deviations between 2.03% and 11.7%. The fiber coating was sensitive and suitable for the preconcentration and determination of polycyclic aromatic hydrocarbons in environmental waters. Compared with previously reported solid-phase microextraction methods, this device offered easy preparation, low cost, resistance to organic solvents, good stability, and high durability.  相似文献   

8.
A micro-cloud point extraction method was discussed for preconcentration and spectrophotometric quantification of U(VI). The method depends on complex formation between U(VI) and 2-(4-sulphophenyloazo)-1,8-dihydroxy-3,6-naphtalenedisulphonic acid (SPADNS) at pH 7.0 and subsequent extraction of the complex in a mixed surfactant medium (cethyltrimethyl ammonium bromide and Triton X-114). The separation was carried out in the presence of 1% Na2SO4 at room temperature. The calibration curve was linear up to 3000 µg L?1. The enrichment factor, detection limit and precision were 16.0, 1.05 µg L?1, and 2.3%, respectively. The method was employed for the determination of U(VI) in real samples with different matrices.  相似文献   

9.
The possibility of using ionic liquid based chitosan sorbent for the separation and preconcentration of fluoroquinolone antibiotics (marbofloxacin, enoxacin, ofloxacin, ciprofloxacin, and enrofloxacin) has been studied. For this reason, different ionic liquids were prepared and coated on the chitosan sorbent. The conditions of the preconcentration of fluoroquinolones on a microcolumn have been optimized and the extraction efficiencies of the prepared sorbents have been compared. The compounds were eluted with 5 mL of 20% NH3 (v/v, MeOH) solution and determined by HPLC with diode array and fluorescence detector. The limits of detection were found as 4.23 µ g L?1 for marbofloxacin, and 1.09 µg L?1 for enoxacin; 3.23 × 10?3 µg L?1 for ofloxacin; 8.39 × 10?3 µg L?1 for ciprofloxacin; and 19.50 × 10?3 µg L?1 for enrofloxacin. The developed method was applied for the analysis of fluoroquinolone in milk, egg, fish, bovine, and chicken samples and the recoveries were obtained in the range 70–100%.  相似文献   

10.
A selective separation and preconcentration method for the determination of gold ions in water and ore samples has been developed using dispersive liquid–liquid microextraction, followed by flame atomic absorption spectrometry. 4-Ethyl-1(2-(4-(4-nitrophenyl)piperazin-1-yl)acetyl)thiosemicarbazide) (NPPTSC) has been used for the first time as new chelating reagent. A mixture of ethanol (dispersive solvent) and carbon tetrachloride (extraction solvent) was used. Some parameters affecting the extraction procedure including the type and volume of the extracting and dispersive solvents, HNO3 concentration, the chelating agent amount, volume of sample, and foreign ions have optimized. Also, the complex formation between gold ions and the ligand has been investigated in a methanol–water solution (1:1) using UV–visible spectrometry. The spectrophotometric titration data showed that of Au–NPPTSC complex composition was found to be 3:2. After optimizing the instrumental and experimental parameters, we achieved a detection limit of 1.5 µg L?1, a preconcentration factor of 50, and a linear dynamic range of 10.0–400.0 µg L?1. The relative standard deviation obtained 2.1% at 50 µg L?1 for gold ions (n = 10). The proposed method was successfully performed for the determination of gold in certified reference material, environmental water, and ore samples.  相似文献   

11.
《Analytical letters》2012,45(18):2899-2911
A reverse configured flow injection system was developed for the determination of copper in water samples. In this study, a bathocuproine disulfonic acid copper complexing reagent was used. In the presence of a reducing agent (hydroxylamine), the formation of complex was monitored at 484 nm. The determination range extended from 1 to 40 µg L?1, with an applicable determination rate of 40 h?1. The developed method was applied to the determination of copper in water samples (estuarine, river, and drinking water) and showed good accuracy (z-score below 2). The detection limit of 0.7 µg L?1 copper is consistent with the requirement of the target water samples. The developed method was also used for the comparison of different spectrophotometric flow cells. Alternative flow cells (U, Z shaped, and the liquid waveguide capillary cell) were compared in terms of their sensitivity and response to refractive index changes.  相似文献   

12.
《Analytical letters》2012,45(1-3):12-24
A simple and sensitive flow-injection method is reported for the determination of retinol and α-tocopherol in human blood serum and pharmaceuticals. The method is based on the reduction of vanadium(V) by retinol and α-tocopherol and subsequent reaction of reduced vanadium with luminol to generate chemiluminescence signal. The optimized conditions allow a linear calibration range of 30–2850 µg L?1 and 5–4300 µg L?1 for retinol and α-tocopherol, with relative standard deviations of 1.2–4.6% and 1.5–5.6%, respectively. The detection limits for retinol and α-tocopherol, defined as three times the standard deviation of measured blanks were 23 µg L?1 and 2.15 µg L?1, respectively. The proposed method allowed up to 20 determinations h?1. The tolerance amount of foreign ions/compounds on the determination of retinol and α-tocopherol was also examined. The method was applied to the determination of retinol and α-tocopherol in human blood serum and pharmaceutical samples using hexane extraction with recoveries in the range of 92 ± 2 to 96 ± 1%, and the results obtained were compared with HPLC reference method.  相似文献   

13.
This study presents an easy and cost-effective flow-based cloud point extraction (CPE) method for determining partial amounts of two organophosphorus pesticides (phosalone and ethion) in seawater by HPLC–UV–Vis. In continues CPE methodology, the effect of the different column packing type such as carbon nanotube, polyacrylonitrile nanofiber and fiberglass on pesticide extraction was investigated. The Triton X-100 was utilized as nonionic surfactant, and moreover, effect of different parameters such as pH, temperature, extraction time, surfactant concentration, type and volume of the eluent solution on the extraction efficiency was optimized. Under optimum conditions, the figures of merit of the method for phosalone and ethion were obtained as: the enrichment factor (172 and 166), line range (0.8–300 and 0.5–300 µg L?1, R 2 = 0.9973 and 0.9982), relative standard deviation in concentration of 200 µg L?1 (%RSD = %5.4 and %7.99, N = 5) and limit of detection (LOD = 0.24 and 0.14 µg L?1). The suggested method was successfully used for determination of phosalone and ethion in Chabahar Bay seawaters with satisfactory results.  相似文献   

14.
《Analytical letters》2012,45(14):2214-2231
Abstract

A new simple and sensitive method has been proposed for rapid determination of trace levels of silver in environmental water samples, using dispersive liquid–liquid microextraction (DLLME) prior to its microsample introduction-flame atomic absorption spectrometry. Under the optimum conditions, the linear range was 0.1–7 µg L?1 and limit of detection was 0.018 µg L?1. The relative standard deviation for 0.50 and 5.00 µg L?1 of silver in water sample was 4.0 and 1.7%, respectively. The relative recoveries of silver from tap, well, river, and seawater samples at spiking levels of 1.00 and 5.00 µg L?1 were in the range of 86.4–98.6%.  相似文献   

15.
《Analytical letters》2012,45(17):2747-2757
Abstract

Brazilian sugarcane spirits were analyzed to elucidate similarities and dissimilarities by principal component analysis. Nine aldehydes, six alcohols, and six metal cations were identified and quantified. Isobutanol (LD 202.9 µg L?1), butiraldehyde (0.08–0.5 µg L?1), ethanol (39–47% v/v), and copper (371–6068 µg L?1) showed marked similarities, but the concentration levels of n-butanol (1.6–7.3 µg L?1), sec-butanol (LD 89 µg L?1), formaldehyde (0.1–0.74 µg L?1), valeraldehyde (0.04–0.31 µg L?1), iron (8.6–139.1 µg L?1), and magnesium (LD 1149 µg L?1) exhibited differences from samples.  相似文献   

16.
In this work, magnetic solid-phase extraction based on sodium dodecyl sulfate-coated Fe3O4 nanoparticles has been successfully applied for extraction and preconcentration of trace amounts of nystatin from water and vaccine samples prior to high-performance liquid chromatography–ultraviolet detection. Various experimental parameters affecting extraction and recovery of the analyte, such as the amount of sodium dodecyl sulfate, pH of the sample solution, salt concentration, extraction time, sample volume and desorption conditions, were systematically studied and optimized. Under optimized conditions, nystatin was quantitatively extracted. Proper linear range with good coefficient of determination, (R 2 > 0.99) and limit of detection and quantification (based on signal-to-noise ratios of 3 and 10) of 2.0 and 5.0 µg L?1, over the investigated concentration range (5–700 µg L?1), were obtained, respectively. The intra-day and inter-day relative standard deviations at 50 µg L?1 level of NYS were 1.4 and 4.5% based on six replicate determinations. The accuracy of the method was evaluated by recovery measurements on spiked samples. Suitable recoveries of 96–102 and 26–44% were achieved (at spiked levels of 50, 300 and 500 µg L?1) for water and vaccine samples, respectively.  相似文献   

17.
A solid phase extraction method based on graphene oxide (GO) modified with magnesium oxide (MgO) nanoparticles was developed for the preconcentration and determination of trace amounts of cadmium, copper and nickel ions. The adsorbed analytes were eluted by 4.0 mL of 0.1 M (EDTA) and injected to flame atomic absorption spectrometer. The factors influencing the complex formation and extraction of these heavy metals were optimized. Studies on potential interference by various anions and cations showed the method to be highly selective. The preconcentration factor was about 11 with relative standard deviation of <4.0 for 8 replication determination. The detection limits for the Cd, Cu, Ni were found to be 0.5, 3.4 and 25 µg L?1, respectively. The method was successfully applied for the determination of cadmium, copper and nickel in tap water, well water, sea water, rice and macaroni samples with spike recoveries ranging 93–105 %.  相似文献   

18.
A novel approach to the electrochemical determination of heavy metals in tap water using anodic stripping voltammetry was developed using screen-printed electrodes modified with gold films. After optimisation of the experimental conditions, the screen-printed electrodes modified with gold films displayed excellent linear behaviour in the examined concentration range from 2 to 16 µg L-1 mercury and lead in 50 mM HCl with a detection limit of 1.5 µg L-1 and 0.5 µg L-1 for mercury and lead, respectively. In order to decrease the working range down to less than 1 µg L-1, a preconcentration step based on the use of magnetic particles modified with thiols was introduced into the protocol. Applying optimum binding conditions, the assay using screen-printed electrodes modified with gold films displayed excellent linear behaviour in the concentration range 0.1 to 0.8 µg L-1 in 50 mM HCl. The detection limit after a 120 s deposition time for mercury and lead were 0.08 µg L-1 and 0.02 µg L-1, respectively. The method has been applied to the determination of mercury and lead traces in tap water  相似文献   

19.
The present paper describes the feasibility of on-line preconcentration of nickel ions from aqueous medium on Ni(II)-imprinted cross-linked poly(methacrylic acid) (IIP) synthesised through a double-imprinting method and their subsequent determination by FAAS. The proposed method consisted in loading the sample (20.0 mL, pH 7.25) through a mini-column packed with 50 mg of the IIP for 2 min. The elution step was performed with 1.0 mol L?1 HNO3 at a flow rate of 7.0 mL min?1. The following parameters were obtained: quantification limit (QL) – 3.74 µg L?1, preconcentration factor (PF) – 36, consumption index (CI) – 0.55 mL, concentration efficiency (CE) – 18 min?1, and sample throughput – 25 h?1. The precision of the procedure assessed in terms of repeatability for ten determinations was 5.6% and 2.5% for respective concentrations of 5.0 and 110.0 µg L?1. Moreover, the analytical curve was obtained in the range of 5.0–180.0 µg L?1 (r = 0.9973), and a 1.64-fold increase in the method sensitivity was observed when compared with the analytical curve constructed for the NIP (non-imprinted polymer), thus suggesting a synergistic effect of the Ni(II) ions and CTAB on the adsorption properties of the IIP. The practical application of the adsorbent was evaluated from an analysis of tap, mineral, lake and river water. Considering the results of addition and recovery experiments (90.2–100 %), the efficiency of this adsorbent can be ensured for the interference-free preconcentration of the Ni(II) ions.  相似文献   

20.
《Analytical letters》2012,45(2):343-355
A new analytical procedure for the determination of five organotin compounds in several matrix wine samples is reported. The organotin compounds were extracted by microwave-assisted extraction with n-hexane. Extraction conditions, such as volume of n-hexane required, extraction temperature, and extraction time, were investigated and optimized by an orthogonal array experimental design. The determination of organotin compounds in the final extracts was carried out by liquid chromatography–inductively coupled plasma mass spectrometry. The procedure showed limits of detection between 0.029–0.049 µg · L?1. The linearity was in the range of 0.5 to 100 µg · L?1. The precision expressed as relative standard deviation (RSD) was below 9.43%. The developed method was successfully employed to analyze different matrix wine samples, and some analytes were detected at the level of 0.053 to 1.14 µg · L?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号