首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
B. Yang  M. J. Gao  G. L. Duan 《Chromatographia》2006,63(9-10):431-436
A simple ion-pair reversed-phase high-performance liquid chromatographic (RP-HPLC) method has been developed for determination of tegaserod maleate and related impurities in tablet dosage forms. The mobile phase was 60:40 (v/v) acetonitrile-25 mmol L?1 sodium dodecyl sulfate, adjusted to pH 2.6 with glacial acetic acid. A C18 column was used as stationary phase and UV detection was at 314 nm. The method was optimized and validated. Response was linearly dependent on concentration between 0.1 and 100 µg mL?1 with a limit of quantification (LOQ) of 0.1 µg mL?1 for tegaserod maleate (S/N = 10). Under optimum conditions, tegaserod maleate was successfully separated from related substances, including 5-methoxyindole-3-carboxaldehyde remaining after synthesis and other impurities possibly resulting from oxidization and decomposition. The excipients did not interfere with assay of tegaserod maleate in tablet dosage forms. It is suggested that the proposed method can be used for routine quality control and dosage-form assay of tegaserod maleate.  相似文献   

2.
A new, simple, rapid, sensitive and specific isocratic RP–LC–UV method was developed and validated for the determination of ondansetron in pharmaceutical dosage forms of orally disintegrating tablets, oral solution and injection. The LC separation was achieved on a Hypersil C4 column (250 × 4.6 mm, 5 μm) using a mobile phase of 50 mM potassium dihydrogen phosphate anhydrous adjusted to pH 3.5 with orthophosphoric acid and acetonitrile (30:70, v/v) at a flow rate of 1.0 mL min?1 and UV detection at 310 nm. The method was validated for specificity, linearity, precision, accuracy, limit of quantification, limit of detection, robustness and solution stability. The calibration curve was linear over a concentration range of 100–1,000 ng mL?1 (r 2  = 0.9996) with limit of detection and limit of quantification 50 and 100 ng mL?1, respectively. The intra-day and inter-day precision and accuracy were between 0.79 and 2.37% and ?0.64 and 1.65%, respectively. The method was successfully applied for analysis of ondansetron in the presence of excipients in commercially available pharmaceutical dosage forms.  相似文献   

3.
A simple, rapid and precise reverse phase LC method was adopted, modified and validated for the determination of clindamycin phosphate from chitosan microspheres prepared by spray drying method. Separation was performed using ACE5 C18 reversed phase column (150 mm × 4.6 mm, 5 μm) with acetonitrile:phosphate buffer at pH 2.5 (25:75 v/v) as mobile phase. The limit of detection was 46.43 × 10?3 μg mL?1, with UV detection at 210 nm. No interference from chitosan and other excipients was observed. Therefore an incorporation efficiency of microspheres could be determined accurately and specifically.  相似文献   

4.
A simple and novel LC method has been developed for determination of isepamicin (ISP) in rat plasma, an aminoglycoside antibiotic agent. After protein precipitation and clean-up procedure to remove lipophilic contaminants, ISP is derivatized by pre-column with 9-fluorenylmethyl chloroformate for fluorescence detection. Chromatographic separations are achieved using a C18 column and mobile phase consisting of water and acetonitrile (68/32, v/v). Amikacin was used as an internal standard. The calibration curve was linear over a concentration range of 0.625–15 μg mL?1. The limit of quantification was 0.45 μg mL?1. The intra- and inter-day variabilities of ISP were both less than 5%. Both derivatives were stable for at least a week at ambient condition. This assay procedure should have useful application in therapeutic drug monitoring of ISP. The limit of detection was 0.10 μg mL?1. The specificity, assay linearity, low level assay linearity and assay repeatability were also investigated. The established method provides a reliable bioanalytical method to carry out isepamicin pharmacokinetics in rat plasma.  相似文献   

5.
A simple and sensitive LC method for the quantitative determination of gemfibrozil in human plasma samples is described. Mometasone furoate was used as the internal standard. Plasma samples were pretreated by protein precipitation using methanol. Separation was performed at 40 °C on a YMC® ODS-A reverse phase column (5 μm particle size, 150 mm × 4.6 mm i.d.) using 0.2% (v/v) triethylamine in water (adjusting to pH 4.0 with phosphoric acid) and acetonitrile (45:55, v/v) as mobile phase which was delivered at 1.5 mL min?1. Ultraviolet detection was performed at 230 nm. The linear concentration range for gemfibrozil was 0.25–50 μg mL?1. The detection limit of this method was 0.1 μg mL?1. Intra- and inter-assay RSD ranged from 0.63 to 2.04% and 1.37 to 4.27%, respectively. The method was sensitive, simple and repeatable enough to be used in pharmacokinetic studies.  相似文献   

6.
A rapid, selective and sensitive reversed-phase liquid chromatographic (LC) method was developed for the determination of piribedil in human serum, urine and pharmaceutical dosage form. LC analysis was carried out using reversed-phase isocratic elution with a C18 column and a mobile phase of 0.01 M phosphate buffer-acetonitrile (50:50, v/v). The chromatograms showed good resolution and sensitivity with no interference of human serum and urine. Piribedil concentrations were determined using diode array detection at 240 nm. Sildenafil citrate was used as internal standard. The limit of quantification (LOQ) and limit of detection (LOD) concentrations were 107.2 and 321.6 pg mL?1, 96.6 and 290.4 pg mL?1, 161.7 and 53.9 pg mL?1 for urine, serum and pharmaceutical dosage forms, respectively. The method was validated for its linearity, precision and accuracy and applied to the tablets, urine and human serum. In addition, the results were compared to those obtained from UV-spectrophotometry.  相似文献   

7.
A simple and sensitive liquid chromatographic assay with fluorescence detection assay was developed for the determination of zearalenone levels in rat serum. The assay utilized a single liquid–liquid extraction with t-butyl methyl ether and isocratic elution using a mobile phase consisting of acetonitrile and 0.1% triethylamine in distilled water (pH = 6) (50:50, v/v). Linearity was observed over a concentration range from 10 to 1,000 ng mL?1 (r = 0.9995), with the limit of quantification at 10 ng mL?1 with 100 μL of rat serum. The validated assay was applied to a pharmacokinetic study in rats.  相似文献   

8.
This article describes the development and validation of a selective high-performance liquid chromatography method that allows, after liquid–liquid extraction and pre-column derivatization reaction with quercetin, the quantification of aluminium chlorohydrate in antiperspirant creams. Chromatographic separation was achieved on an XTerra MS C18 analytical column (150 × 3.0 mm i.d., particle size 5 μm) using a mobile phase of acetonitrile:water (15:85, v/v) containing 0.08 % trifluoroacetic acid at a flow rate of 0.30 mL min?1. Ultraviolet spectrophotometric detection at 415 nm was used. The assay was linear over a concentration range of 3.7–30.6 μg mL?1 for aluminium with a limit of quantitation of 3.74 μg mL?1. Quality control samples (4.4, 17.1 and 30.6 μg mL?1) in five replicates from five different runs of analysis demonstrated intra-assay precision (% coefficient of variation <3.8 %), inter-assay precision (% coefficient of variation <5.4 %) and an overall accuracy (% recovery) between 96 and 101 %. The method was used to quantify aluminium in antiperspirant creams containing 11.0, 13.0 and 16.0 % (w/w) aluminium chlorohydrate, respectively.  相似文献   

9.
A sensitive and specific assay based on liquid chromatography with ultraviolet detection was developed for the simultaneous determination of pirfenidone (PFD), a novel antifibrotic agent, and its carboxylic acid metabolite in human plasma. The carboxylic acid metabolite was further identified by mass spectrometric analysis. PFD, its carboxylic acid metabolite and the internal standard methyl-p-aminobenzoate were extracted from plasma by a simple one-step liquid-liquid extraction with ethyl acetate and subsequently separated on a Zorbax SB-C18 column with a mobile phase of trifluoroacetic acid–triethylamine–acetonitrile–water (0.1:0.15:28:71.75, v/v/v/v) and monitored at 314 nm. Extraction recovery was over 70% in plasma. The calibration curves were linear over the concentration range of 0.05–25 μg mL?1. The limit of detection (LOD) and lower limit of quantitation (LLOQ) in human plasma were 10 and 50 ng mL?1, respectively. Intra- and inter-assay precision of the method were within 8.6%. The accuracy as expressed by the bias ranged between ?4.5 and 4.0%. The method was successfully applied to determine pharmacokinetic parameters of PFD and its carboxylic acid metabolite after a single oral dose of 200 mg of PFD in healthy volunteers.  相似文献   

10.
A simple, precise, accurate, selective, and sensitive reversed-phase LC–UV method has been developed for simultaneous analysis of diltiazem and non-steroidal anti-inflammatory drugs (NSAIDs) in the bulk drug, tablet dosage forms, and human serum. Chromatographic separation of the drugs was performed at ambient temperature on a C18 stationary phase with 80:20 (v/v) methanol–water, pH 3.1 ± 0.02, as isocratic mobile phase. The mobile phase flow rate was initially 0.5 mL min?1 then increased to 1 mL min?1. All the NSAIDs were well separated from each other and from diltiazem. Total run time was 10 min. The assay was successfully applied to pharmaceutical formulations and serum and there was no chromatographic interference from tablet excipients. The method was linear in the range 1.25–50 μg mL?1 both for diltiazem and the NSAIDs. The suitability of this HPLC method for quantitative analysis of the drugs was proved by validation in accordance with International Conference on Harmonization (ICH) guidelines. The validation results, and results from statistical analysis of the data, demonstrated the method was reliable.  相似文献   

11.
A liquid chromatographic method for the determination of lidocaine (LID), prilocaine (PRL) and their impurities 2,6-dimethylaniline (DMA) and o-toluidine (TOL) has been developed. The analysis was performed on a reversed phase C18 Hypersil BDS column at ambient temperature. A mobile phase consisting of Briton-Robinson buffer, pH 7—methanol—acetonitrile (40: 45: 15 v/v/v) was used at a flow rate of 1.2 mL min?1. Detection was achieved at 225 nm using benzophenone as internal standard over the concentration range 1.25–80 μg mL?1 for all analytes. The relative standard deviations RSD (n = 7) for the assay were less than 0.95%. Limit of detection values were found to be 0.346, 0.423, 0.112 and 0.241 μg mL?1 for LID, PRL, DMA and TOL, respectively. The intraday and the inter-days RSD % indicated the precision of the procedure. The method proved to be suitable for the quality control of LID and PRL in pharmaceuticals.  相似文献   

12.
A stability-indicating LC method was developed for the simultaneous determination of ibuprofen and diphenhydramine citrate in pharmaceutical dosage forms. The chromatographic separation was achieved on an Inertsil ODS 3V, 150 × 4.6 mm, 5 μm, column. The mobile phase contained a mixture of 50 mM potassium dihydrogen phosphate buffer:acetonitrile:triethylamine:glacial acetic acid (55:45:0.2:0.2, v/v/v/v). This method allowed the determination of 2.85–9.14 mg mL?1 of ibuprofen and 0.54–1.73 mg mL?1 of diphenhydramine citrate, in a diluent consisting of pH 7.2, 50 mM potassium dihydrogen phosphate buffer:acetonitrile (40:60, v/v). The flow rate was 1.2 mL min?1 and the detection wavelength was 260 nm. The limit of detection for ibuprofen and diphenhydramine citrate was 1.72 and 0.54 μg mL?1 and the limit of quantification was 5.73 and 1.64 μg mL?1, respectively. This method was validated for accuracy, precision and linearity. The method was also found to be stability indicating.  相似文献   

13.
Dogan-Topal  B.  Uslu  B.  Ozkan  S. A. 《Chromatographia》2007,66(1):97-101

This paper describes the validation of an isocratic high-performance liquid chromatographic method for the assay of valganciclovir in raw materials, tablets and human serum samples. Valganciclovir and fluvastatin (internal standard) were well separated using a reversed phase column and a mobile phase consisting of a mixture of acetonitrile:methanol:KH2PO4 (0.02 M) (40:20:40; v/v/v) (at pH 5.0). The mobile phase was pumped at 1.0 mL min−1 flow rate and valganciclovir was detected by diode-array detection at 255 nm. The retention times for valganciclovir and fluvastatin were 3.41 and 5.60 min, respectively. A linear response (r > 0.999) was observed in the range of 10–30,000 ng mL−1 in mobile phase and serum. The limit of detection and limit of quantification were found as 2.95 and 9.82 ng mL−1 in mobile phase and 1.73 and 5.77 ng mL−1 in human serum samples, respectively. Validation parameters as precision, accuracy, selectivity, reproducibility and system suitability tests were also determined. The method can be used for valganciclovir assay of tablets and human serum samples as the method separates valganciclovir from tablet excipients and endogenous substances.

  相似文献   

14.
A sensitive and accurate liquid chromatographic method for the determination of AR-42 enantiomeric purity has been developed and validated. Baseline separation with a resolution higher than 1.9 was accomplished within 10 min using a CHIRALPAK AD column (250 mm × 4.6 mm; particle size 5 μm) and n-hexane/2-propanol/diethylamine (75:25:0.1 v/v/v) as mobile phase at a flow rate of 1 mL min?1. Eluted analytes were monitored by UV absorption at 260 nm. The effects of mobile phase components, temperature and flow rate on enantiomeric selectivity and resolution of enantiomers were investigated. Calibration curves were plotted within the concentration range between 0.001 and 0.5 mg mL?1 (n = 10), and the recoveries between 98.23 and 101.87% were obtained, with relative standard deviation lower than 1.31%. Limit of detection and limit of quantitation for AR-42 were 0.39 and 1.28 μg mL?1 and for its enantiomer were 0.36 and 1.19 μg mL?1, respectively. It was demonstrated that the developed method was accurate, robust and sensitive for the determination of enantiomeric purity of AR-42, especially for the analysis of bulk samples.  相似文献   

15.
A sensitive, selective and accurate ultra performance liquid chromatographic method has been developed and validated for the simultaneous determination of bisoprolol fumarate and hydrochlorothiazide in their combined dosage forms and as well as in spiked human urine samples. The separation was achieved on an Acquity UPLC BEH C18 1.7 μm (2.1 × 50 mm) column, at 40 °C with mobile phase consisting of acetonitrile:phosphate buffer (20 mM) at pH 3.0 with a gradient elution at 225 nm. Bisoprolol fumarate and hydrochlorothiazide were well separated in <1.5 min with good resolution and without any tailing and interference of excipients. The method was fully validated according to ICH guidelines in terms of accuracy, precision, linearity and specificity. A linear response was observed over the concentration range 0.5–150 μg mL?1 for hydrochlorothiazide and 0.5–250 μg mL?1 for bisoprolol fumarate. Limit of detection and limit of quantitation for hydrochlorothiazide were calculated as 0.01 and 0.03 μg mL?1, respectively, and for bisoprolol fumarate were 0.07 and 0.21 μg mL?1, respectively. Moreover, bisoprolol fumarate and hydrochlorothiazide were subjected to degradation conditions such as hydrolytic, oxidative and thermal stress conditions to evaluate the ability of the proposed method for the separation of bisoprolol fumarate and hydrochlorothiazide from their degradation compounds.  相似文献   

16.
A simple, sensitive and accurate liquid chromatographic method with UV detection was developed and validated to determine voriconazole in a new emulsion formulation. Chromatographic separation was achieved on a Diamonsil C18 column (250 × 4.6 mm I.D., 5 μm) using a mobile phase consisting of acetonitrile-water-acetic acid (40:60:0.25, v/v/v) at a flow rate of 1.0 mL min?1. The UV detection wavelength was set at 256 nm. The linear calibration curves were obtained in the concentration range of 1.00–100 μg mL?1 with the limit of quantification of 1.00 μg mL?1. The within- and between-run precisions in terms of percentage relative standard deviation were lower than 7.4 and 7.1%, respectively. The accuracy in terms of percentage relative error ranged from ?1.5 to 1.4%. This validated method was successfully applied to the determination of the content of voriconazole in a new emulsion formulation.  相似文献   

17.
A rapid and sensitive LC method was developed and validated for the determination of diastereomeric purity of tenofovir alafenamide (GS-7340). Baseline separation with resolution >2.8 was achieved within 17 min on a CHIRALPAK AD-3 (250 × 4.6 mm; particle size 3 μm) column using n-hexane:2-propanol (60:40 v/v) as the mobile phase at a flow rate of 1 mL min?1. The analytes were detected by UV absorbance at 260 nm. The effects of ethanol, 2-propanol, and temperature on diastereomeric selectivity and resolution of diastereomerism were evaluated. The method was extensively validated and proved to be robust. The recoveries were between 98.17 and 102.84 % with <1.93 % relative standard deviation. The limit of detection and limit of quantitation for GS-7339 were 0.77 and 2.56 μg mL?1 and for GS-7340 were 0.61 and 2.04 μg mL?1, respectively. This method was extensively proved to be accurate, stable, rapid, and sensitive for the determination of diastereomeric purity of tenofovir alafenamide (GS-7340) in bulk samples.  相似文献   

18.
Fan Xu  Guili Xu  Beicheng Shang  Fang Yu 《Chromatographia》2009,69(11-12):1421-1426
A simple, specific and sensitive liquid chromatographic method has been developed for the assay of ketorolac in human plasma and urine. The clean-up of plasma and urine samples were carried out by protein precipitation procedure and liquid–liquid extraction, respectively. Separation was performed by a Waters sunfire C18 reversed-phase column maintained at 35 °C. The mobile phase was a mixture of 0.02 M phosphate buffer (pH adjusted to 4.5 for plasma samples and to 3.5 for urine samples) and acetonitrile (70:30, v/v) at a flow rate of 1.0 mL min?1. The UV detector was set at 315 nm. Nevirapine was used as an internal standard in the assay of urine sample. The method was validated over the concentration range of 0.05–8 and 0.1–10 μg mL?1 for ketorolac in human plasma and urine, respectively. The limits of detection were 0.02 and 0.04 μg mL?1 for plasma and urine estimation at a signal-to-noise ratio of 3. The limits of quantification were 0.05 and 0.1 μg mL?1 for plasma and urine, respectively. The extraction recoveries were found to be 99.3 ± 4.2 and 80.3 ± 3.7% for plasma and urine, respectively. The intra-day and inter-day standard deviations were less than 0.5. The method indicated good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. This assay demonstrated to be applicable for clinical pharmacokinetic studies.  相似文献   

19.
P. D. Bari  A. R. Rote 《Chromatographia》2009,69(11-12):1469-1472
Two new, rapid, precise, accurate and specific chromatographic methods were described for the simultaneous determination of olmesartan medoxomil and hydrochlorothiazide in combined tablet dosage forms. The first method was based on reversed phase liquid chromatography using an Eurosphere 100 RP C18 column (250 × 4.6 mm ID, 5 μm). The mobile phase was methanol–0.05% o-phosphoric acid (60:40 v/v) at a flow rate of 1.0 mL min?1. Commercially available tablets and laboratory mixtures containing both drugs were assayed and detected using a UV detector at 270 nm. The second method involved silica gel 60 F254 high performance thin layer chromatography and densitometric detection at 254 nm using acetonitrile–ethyl acetate–glacial acid (7:3:0.4 v/v/v) as the mobile phase. Calibration curves ranged between 200–600 and 125–375 ng spot?1 for olmesartan and hydrochlorothiazide, respectively.  相似文献   

20.
A reversed-phase liquid chromatography (RP-LC) method was validated for the determination of rupatadine in pharmaceutical dosage forms. The LC method was carried out on a Gemini C18 column (150 mm × 4.6 mm I.D.), maintained at 30 °C. The mobile phase consisted of ammonium acetate buffer (pH 3.0; 0.01 M) with 0.05% of 1-heptanesulfonic acid–acetonitrile (71.5:28.5, v/v), run at a flow rate of 1.0 mL min?1 and using photodiode array (PDA) detection at 242 nm. The chromatographic separation was obtained with retention time of 5.15 min, and was linear in the range of 0.5–400 μg mL?1 (r = 0.9999). The specificity and stability-indicating capability of the method was proven through the degradation studies and showing also, that there was no interference of the excipients. The accuracy was 100.39% with bias lower than 0.58%. The limits of detection and quantitation were 0.01 and 0.5 μg mL?1, respectively. Moreover, method validation demonstrated acceptable results for precision, sensitivity and robustness. The proposed method was applied for the analysis of pharmaceutical dosage forms assuring the therapeutic efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号