首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ammonia is important in atmospheric chemistry because it neutralises acidic species and increases the pH of cloud droplets. Data on the concentration of free ammonia in the atmosphere are sparse because it is difficult to separate free ammonia from particulate ammonium salt aerosol. A manual method for the determination of free ammonia in air is described based on diffusion/denuder tube separation of ammonia from ammonium salt aerosol. When air is drawn through a tube coated with a selective absorbent (here oxalic acid) separation is achieved because the gaseous species diffuses much more rapidly to the tube wall than the particles. After the sampling period (usually 1–4 h, depending on the free ammonia concentration expected), the sorbed ammonia is washed from the tube and measured potentiometrically with an ammonia probe. The method is tested theoretically and experimentally. The absorption efficiency of the coated tubes is ca. 90%. In samples of room air containing 12–28 μg m?3, the standard deviation is estimated as 1.0 μg m?3. In field use, ammonia contents were in the range 0.53–5.0 μg m?3.  相似文献   

2.
Neutron scattering data was recorded from SAPO-34 using the OSIRIS instrument before and after repeated ammonia adsorption at pressures up to 8 bar. Coherent scattering from the zeolite framework provides the neutron powder diffraction pattern and gave evidence for anisotropic contraction on ammonia dosing. Incoherent quasielastic scattering from the hydrogen of the ammonia showed that mobile ammonia was present in the framework. The quasielastic data was fitted to a model where the ammonia was confined within the chabazite cage in the c direction of the crystal lattice, with diffusion solely occurring through the perpendicular 8-membered rings. The calculated diffusion constant reached a maximum of 6.3×10−8 m2 s−1 at 5 bar.  相似文献   

3.
Abstract

Trace gaseous nitric acid was generated using a diffusion cell. The determination was made by collection in cellulose filters coated with K2CO3 and measuring the concentration by ion chromatography. The measured HNO3-air diffusion coefficient was 0.0404±0.0010 cm2/s (n=21) for T=298.15 K and P=1 atm. Their dependence with the temperature, over the range from 297.15 K to 318.15 K, could be expressed by D = 10?4.7773.T1.366 (R2=0.9467).  相似文献   

4.
Polysulfone (PSF) and sulfonated polysulfone (SPSF) were synthesized and characterized by IR spectrum. Sm1.5Sr0.5NiO4 (SSN) and Ni‐Ce0.8Sm0.2O2?δ (Ni‐SDC, Ni‐samarium doped ceria) were prepared and characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Ammonia was synthesized from wet hydrogen and dry nitrogen with applied voltage, using SSN as cathode, Ni‐SDC as anode, Nafion and SPSF as proton membrane respectively. The performances of Nafion and SPSF membranes in ammonia synthesis were investigated and compared at atmospheric pressure and low temperature (25–100°C). The results demonstrated that the proton conducting performances of Nafion and SPSF membranes were similar and the highest rates of evolution of ammonia were up to 1.05×10?8 and 1.03×10?8 mol·cm?2·s?1 respectively at 80°C and 2.5 V.  相似文献   

5.
Thermal lens spectrometry was used to study Langmuir–Blodgett films of a weakly absorbing Nafion polyelectrolyte membrane on the surface of inert polyethylene terephthalate (PET) and glass substrates and to estimate the amount of Nafion (number of layers) using a change in the thermal characteristics of the sample. The sensitivity of thermal lens measurements at the wavelength of the exciting radiation 532.0 nm is comparable to that of solid-state spectrophotometry in the region of the maximum absorbance of Nafion (275 nm). However, the high locality of thermal lens spectrometry (the area of the signal generation zone is 100 μm2) ensures the estimation of the uniformity of the deposition of the polyelectrolyte layer. To increase the absorbance of the layer of the applied polyelectrolyte, the latter is saturated with a colored compound (ferroin). The adsorption of ferroin into the Nafion layer on the PET surface was confirmed; the absorbance of ferroin in the Nafion layer is in the range of 1 × 10–5–5 × 10–4 units of absorbance, which corresponds to the surface concentration of ferroin 1 × 10–11–4 × 10–10 mol/cm2.  相似文献   

6.
This paper presents results of an investigation on influence of volumetric flow rate on the signal and response time of a prototype of sulfur dioxide gas sensor with Nafion membrane. The sensors differing in type of working electrode and composition of internal electrolyte were compared. We used Au and Pt working electrodes obtained via vacuum sublimation deposition on a Nafion membrane surface. The electrolytes were aqueous solutions of sulfuric acid of the summary concentration 5 mol dm?3 (electrolyte A). The electrolyte B contained an addition of dimethylsulfoxide (DMSO); the water/DMSO molar ratio was 2 : 1. Based on a proposed equation, which takes diffusion resistance into account, the obtained sensor signals were analyzed for the flow rate within a range of 0–100 cm3 min?1. The sensor response time was also determined for the above flow rate range.  相似文献   

7.
刘佩芳  文利柏 《中国化学》1998,16(3):234-242
The mass transport and charge transfer kinetics of ozone reduction at Nafion coated Au electrodes were studied in 0.5 mol/L H2SO4 and highly resistive solutions such as distilled water and tap water. The diffusion coefficient and partition coefficient of ozone in Nafion coating are 1.78×10-6 cm2·s-1 and 2.75 at 25℃ (based on dry state thickness), respectively. The heterogeneous rate constants and Tafel slopes for ozone reduction at bare Au are 4.1×10-6 cm·s-1, 1.0×10-6 cm·s-1 and 181 mV, 207 mV in 0.5 mol/L H2SO4 and distilled water respectively and the corresponding values for Nafion coated Au are 5.5×10-6 cm·s-1, 1.1×10-6 cm·s-1 and 182 mV, 168 mV respectively. The Au microelectrode with 3 μm Nafion coating shows good linearity over the range 0-10 mmol/L ozone in distilled water with sensitivity 61 μA·ppm-1 ·cm-2, detection limit 10 ppb and 95% response time below 5 s at 25℃. The temperature coefficient in range of 11-30℃ is 1.3%.  相似文献   

8.
A proof-of-concept study was conducted on an all-solid-state rechargeable air battery (SSAB) using redox-active 2,5-dihydroxy-1,4-benzoquinone (DHBQ) and its polymer (PDBM) and a proton-conductive polymer (Nafion). DHBQ functioned well in the redox reaction with the solid Nafion ionomer at 0.47 and 0.57 V vs. RHE, similar to that in acid aqueous solution. The resulting air battery exhibited an open circuit voltage of 0.80 V and a discharge capacity of 29.7 mAh gDHBQ−1 at a constant current density (1 mA cm−2). With PDBM, the discharge capacity was much higher, 176.1 mAh gPDBM−1, because of the improved utilization of the redox-active moieties. In the rate characteristics of the SSAB-PDBM, the coulombic efficiency was 84 % at 4 C, which decreased to 66 % at 101 C. In a charge/discharge cycle test, the capacity remaining after 30 cycles was 44 %, which was able to be significantly improved, to 78 %, by tuning the Nafion composition in the negative electrode.  相似文献   

9.
The deposition velocity of gaseous organic129I species from the exhaust air stack of the Karlsruhe reprocessing plant onto pasture grass was measured by a field experiment. By simultaneously measuring the amount of129I deposited per unit area of pasture grass and the time integrated mean air concentration of129I a deposition velocity of Vg=5.8×10–1 /cm s–1/ onto pasture grass was determined.  相似文献   

10.
《Analytical letters》2012,45(4):539-552
Abstract

Solid polycyclic aromatic hydrocarbons with 4–7 rings on metal, glass, ceramic, and plastic substrates were desorbed and ionized in air with a quadrupled Nd-YAG laser. Gaseous product ions were analyzed at ambient conditions in air directly using ion mobility spectrometry. Ablation rates for perylene on borosilicate glass were estimated as 0.01 ng/mm2 per pulse and standard deviation for peak heights with roughly 1 ug/mm2 was 34 %. Substrate interference was avoided by using an unfocused laser beam at 0.5–1 mJ/pulse although gaseous ions also could be generated from substrates with a focused beam at 1 mJ/pulse.  相似文献   

11.
《Analytical letters》2012,45(7):1321-1332
Abstract

A novel amperometric nitric oxide (NO) sensor based on a glassy carbon electrode modified with thionine and Nafion films has been developed. The oxidation peak current of NO increased significantly at the poly(thionine)/Nafion‐modified glassy carbon electrode (GCE), which can be used for the detection of NO. The oxidation peak current was linear with the concentration of nitric oxide over the range from 3.6×10?7 to 6.8×10?5 mol · L?1, and the detection limit was 7.2×10?8 mol · L?1. This nitric oxide sensor showed high selectivity to nitric oxide determination, and some potential interference could be eliminated effectively. The nitric oxide sensor has been applied to monitor NO release from rat kidney stimulated by L‐arginine. The results indicated the applicability of the NO sensor to biomedical samples.  相似文献   

12.
《Analytical letters》2012,45(15):2364-2377
Abstract

An automated ammonia monitoring system has been developed by putting a pervaporation unit in an enrichment cycle used in flow injection analysis mode. In the proposed system, an enrichment cycle was equipped to enable the adjustment for the measuring range of ammonium by controlling the duration of the enrichment circulation. Therefore, the system was capable to determine ammonia in both the surface water with low ammonia concentration and the ammonia-rich wastewater with the linear dynamic range of 0.05–15 mg l?1 and 15–50 mg l?1, respectively. The relative standard deviations were less than 1.9% and the quantification limit is as low as 0.03 mg l?1. The sampling frequency is 8–10 h?1.  相似文献   

13.
ABSTRACT

The continuous and selective determination method of formaldehyde (HCHO) in ambient air using chemiluminescence method has been developed. The counter current flow tube was used to collect gaseous formaldehyde. The major interferences of HCHO determination from acetaldehyde, ethanol, and ferrous ion were removed by applying iodoform reaction. Effect of acetaldehyde on chemiluminescence signal of formaldehyde at the same concentration was reduced from 19 to 0.3% by applying iodoform reaction. Subsequently, HCHO was online detected by measuring chemiluminescence produced from the reaction of HCHO, gallic acid, H2O2, and KOH. The limit of detection (S/N = 3) was 4.5 ppbv in air. The calibration graph was linear up to 6.25 ppmv. HCHO concentration measured by the present method showed good agreement with that obtained by the 2–4 DNPH-HPLC method.  相似文献   

14.
The electrocatalytic reduction of nitrite to NO by [CuMe2bpa(H2O)(ClO4)]+ ( 1 ), which is a model for the active site of copper‐containing nitrite reductase, incorporated in Nafion film was investigated. The Cu complex in the Nafion matrix exhibits an intense band at 267 nm and a broad band around 680 nm, assigned to d–d and ligand field transitions, respectively. The 77‐K EPR spectrum of 1 in the Nafion matrix reveals the typical axial signals (g//=2.28, g =2.08, A//=13.3 mT) of a tetragonal Cu2+ chromophore. The redox potential, which is related to the Cu+/Cu2+ couple, was ?146 mV (ΔE=72 mV) at pH 5.5. The redox reaction of 1 in Nafion was not dependent on pH and was a diffusion‐controlled process. The electronic structure and redox properties of 1 in the negatively charged polymer matrix were almost the same as those in aqueous solution. In the presence of nitrite, an increase in the cathodic current was observed in the cyclic voltammogram of 1 in the Nafion matrix. The current increase was dependent on the nitrite concentration and pH in solution. Upon reaching ?400 mV, a linear generation of NO was observed for the 1 /Nafion film coated electrode. The relationship between the rate of NO generation and the nitrite concentration in solution was analyzed with the Michaelis–Menten equation, where Vmax=45.1 nM s?1 and Km=15.8 mM at pH 5.5. The Cu complex serves the function of both the catalyst and electron transport in the Nafion matrix. The sensitivity of the electrode was estimated to be 3.23 μA mM?1 in the range of 0.1–0.4 mM nitrite.  相似文献   

15.
In this work, a simple and effective approach to obtain stable, nontoxic and strong electrochemiluminescence (ECL) interfaces is provided by coating TiO2 nanoparticles (NPs) modified glassy carbon electrode (GCE) surfaces with Nafion. Unlike a decrease of the current resulting from the blocked diffusion usually displayed in electrochemical processes by Nafion coating, a Nafion/TiO2 NPs modified electrode not only shows a highly stable ECL, but also shows an 8‐fold increase of ECL intensity and a reduction of the overpotential of ca. 300 mV in the presence of K2S2O8 as co‐reactant, compared with those of bare TiO2 NPs modified electrodes. The roles of Nafion coating on TiO2 NPs in the ECL process are proposed to be twofold: to provide refuge for the free radicals and to enhance the electron‐hole recombination. Benefiting from its excellent ECL performance, the cationic exchange function of Nafion and the susceptible to being oxidized performance of dopamine (DA) by holes, the Nafion/TiO2 composite electrode could be used to sensitively and selectively detect DA with a detection limit of 1.0×10?11 M and a linear range of 1.0×10?11–6.0×10?7 M. The coexisting anionic species such as excess ascorbic acid show little interference on DA detection.  相似文献   

16.
徐高超  刘瑞泉 《中国化学》2009,27(4):677-680
利用溶胶—凝胶法制备了复合氧化物Sm1.5Sr0.5MO4 (M=Ni, Co, Fe)(SSM),并利用XRD和SEM等对样品进行表征。用Nafion膜作电解质、以SSM作为阴极、Ni-SDC金属陶瓷为阳极、银-铂网做集流体组成单电池,在温度为25℃~100℃的低温常压下以干燥氮气和湿的氢气为原料进行电化学合成氨气测定,同时研究了影响氨合成的关键因素,确定了合适的工作温度,实验结果表明,最高氨产率可达到1.05×10-8mol·s-1·cm-2。  相似文献   

17.
《Analytical letters》2012,45(13):2077-2088
Abstract

An electrochemiluminescence (ECL) method for reduced nicotinamide adenine dinucleotide (NADH) was proposed by immobilizing tris(2,2′‐bipyridyl) ruthenium(II) (Ru(bpy)3 2+) in multiwall carbon nanotubes (MWCNTs)/Nafion composite membrane that was formed on glassy carbon electrode surface. The electrochemical and ECL behaviors of the immobilized Ru(bpy)3 2+ were investigated. The cyclic votammogram of the modified electrode in pH 7.0 phosphate buffer solution showed a couple of redox peaks at +1190 and +1060 mV at 100 mV/s. The composite film had a more open structure and a large surface area allowing faster diffusion of Ru(bpy)3 2+. The presence of MWCNTs resulted in the improved ECL sensitivity and longer‐term stability of the modified electrode. The modified electrode showed a linear response to NADH in the concentration range of 1.0×10?6 to 1.6×10?5 M with a detection limit of 8.2×10?7 M.  相似文献   

18.
A multiply‐fluorinated cobalt phthalocyanine (CoFPC) was prepared, which could reversibly interact with oxygen. CoFPC was introduced into the hydrophobic perfluoroethylene‐backbone domain of the Nafion membrane. The localization of CoFPC did not reduce the high proton conductivity (10?2–10?3 S cm?1) ascribed to the hydrophilic channel of Nafion. The oxygen permeability through the CoFPC/Nafion membrane was higher than the nitrogen permeability and that of the pristine Nafion membrane, and was significantly enhanced at the lower upstream pressure. The permselectivity of oxygen versus nitrogen increased beyond 20 with the CoFPC content in the membrane. The CoFPC/Nafion membrane was coated on a glassy carbon modified with a Pt/C catalyst. The high electrochemical reduction current of oxygen suggested that the CoFPC/Nafion membrane efficiently supplied oxygen to the Pt/C catalyst. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

A light and portable organic vapours monitor has been developed using piezoelectric (P/Z) quartz crystal to determine Volatile Organic Compounds (VOCs) commonly found in workplace air. Out of the eight coating material studied, High Vacuum Grease (HVG) was found to be the best for determining commonly encountered organic vapours such as 1,1,1-Trichloroethane, Chloroform, Benzene and Toluene in room air. The optimised coating weight was 23 μg HVG at a flow rate of 200 mL/min. Moisture was found to interfere and the use of a Nafion gas dryer was found to reduce the relative humidity to a constant 37 % for room air with 43–81 % relative humidity. Under optimised conditions, a mean sensitivity of 1.9 × 1?2 Hz/ppm was obtained for total VOCs with 17.2% RSD variation towards different VOCs. Excellent linear working ranges were obtained from 40 to 2400 ppm (v/v), with response time and recovery time within one minute up to 500 ppm (v/v) of analyte. High and relatively constant response factors were obtained for different VOCs. The reliability of the mcthod has been established by parallel method comparison using established GC-FID method. The P/Z detector developed could also be used to monitor individual VOCs.  相似文献   

20.
A simple uniform-pressure diffusion apparatus has been used to measure the diffusivities of the gaseous fluorocarbons CF4 and CF2Cl2 in air at atmospheric pressure and room temperature (293 K). The diffusion coefficients are found to be D(CF4—air) = 0.121 cm2s?1 and D(CF2Cl2—air) = 0.098 cm2s?1. The observed diffusion flux ratios are in agreement with Graham's diffusion law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号