首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A molecular imprinting polymer (MIP) based on surface modification of silica gel was prepared via the sol–gel process with 3-aminopropyltriethoxysilane and phenyltrimethoxysilane as functional monomers, and estazolam as the template. The imprinted silica sorbent was characterized by Fourier Transform Infrared Spectroscopy, surface elemental analysis, and scanning electron microscopy (SEM). An MIP of agglomerated nano-particles with multi-pores was grafted onto the surface of the silica gel after hydrolytic condensation of the siloxane. The imprinted silica sorbent was used for solid phase extraction (SPE). Using water as loading solvent, the extraction efficiency for estazolam was higher compared to the use of an organic solvent. The imprinted silica sorbent was selective not only for the template, but also for the analogue. Compared to C18-SPE and liquid–liquid extraction, the MIP-SPE was the most feasible technique for extraction of estazolam from human plasma; up to 98.7?±?1.2% recovery was achieved.  相似文献   

2.
Summary This work describes an HPLC method for the determination of formaldehyde concentration in air. Traps containing 20–40 mesh silica gel coated with 2,4-dinitrophenylhydrazine (DNPH) are used. After aspiration of air the traps are eluted with methanol. The hydrazone formed is then separated on a C18 column using a mobile phase of methanolwater (50–50 v/v). The effluent is monitored with a UV detector at 365 nm. To calibrate and to compare this method with that of Niosh 2502 (traps coated with 2 benzylamino ethanol on Chromosorb 102), a mixing chamber that generated atmospheres of known concentration of formaldehyde was used.  相似文献   

3.
Abstract

Captan, folpet, and captafol were determined in water, lettuce, and apples by TLC of extracts on preadsorbent silica gel layers, detection with silver nitrate reagent, and densitometric scanning. The fungicides were extracted from water on Chromosorb 102 raicrocolumns. Cleanup on a Florisil column was required for the food extracts. Recoveries from distilled and tap water ranged from 76–98% at 0.02 ppm and 81–94% at 0.007 ppm. Recoveries from lettuce ranged from 88–94% and from apples 84–90%, both at 0.25 ppm. The selectivity, sensitivity, and precision of the method are adequate for routine residue analysis.  相似文献   

4.
A silica gel sorbent loaded with sodium diethyldithiocarbamate has been developed for the preconcentration of lead, cadmium and zinc prior to their determination by flameatomic absorption spectrometry (FAAS). The sorption and desorption of the metal ions was studied under both static and dynamic conditions. The metal ions were quantitatively retained on the silica gel sorbent based on an equilibrium time of less than 1 min. In case of the batch method, the effects of pH, shaking time, amount of sorbent, and desorption time were investigated. Among the desorption agents studied, only EDTA in ammonium chloride/ammonia buffer yielded quantitative recoveries. Freundlich's sorption isotherms determined for each metal show that sufficient sorption ability is obtained. The column method allows the preconcentration of metal ions from large sample volumes (e.g. 200 mL) using a flow rate of 5 mL min–1. The influence of foreign ions present in natural waters and saline solutions was examined. The reproducibility of the total analytical method, expressed as relative standard deviation (RSD) is 1.8, 0.5 and 0.6%, for lead, cadmium and zinc, respectively.  相似文献   

5.
《Analytical letters》2012,45(13):2524-2543
Abstract

Silica gel was modified by thiosalicylic acid via homogeneous routes to obtain immobilized silica gel sorbent (TSA‐immobilized silica gel). This new sorbent was characterized using variety of physical chemistry techniques including, high resolution solid state 13C and 29Si CP/MAS NMR, X‐ray photoelectron spectroscopy (XPS), thermal analysis (TGA and DTA), elemental analysis, and BET surface analysis as well as infrared spectroscopy (FTIR). New support was used for the selective extraction and concentration of lead ions by silica gel modified with thiosalicylic acid, as a highly selective and stable reagent, from aquatic samples and its determination with FAAS. Lead ions can be desorbed with 4 mol dm?3 HNO3. The sorption capacity for lead ions are found in the range of 64.40 to 69.90 µmol g?1 of chelating matrix. Tolerance limits for electrolytes and some trace metals in the sorption of lead is reported. Preconcentration factor was found as 150 for Pb(II). The lead in drinking water, mineral water, tap water, and fruit juice was quantitatively recovered with a relative standard deviation lower than 1.50%. A detection limit of the method for lead ions was found as 3.7 µg l?1.  相似文献   

6.
A modified sorbent for99mTe generators of higher activities has been developed. The sorbent consists of two layers. The layer in which (F.P.)99Mo is adsorbed contains alumina and silica gel mixture in the weight ratio 40∶60%. The underlaying layer contains 0.5% g of pure alumina. The performances of the columns filled with this sorbent are compared to these containing pure alumina with respect to the total elution efficiency of99mTc and the elution efficiency ratio of subsequent elutions. Radiochemical and radionuclidic purities (99Mo breakthrough) of eluates from both kinds of columns have also been determined and compared.  相似文献   

7.
Silica gel surface was chemically functionalized by reaction the silanol from the silica surface with 3-chloropropyltrimethoxysilane followed by reaction with Sulfasalazine. This new sorbent has been used for the preconcentration of low levels of U(VI) ions from an aqueous phase. Parameters involved in extraction efficiency such as pH, weight of the sorbent, volume of sample and eluent were optimized in batch and column methods prior to determination by spectrophotometry using arsenazo(III) reagent. The results showed that U(VI) ions can be sorbed at pH range of 5.0–6.0 in a minicolumn and quantitative recovery of U(VI) (>98.0?±?1.6%) was achieved by stripping with 2.5 mL of 0.1 mol L?1 HCl. The sorption capacity of the functionalized silica gel was 1.15 mmol g?1 of U(VI). A linear calibration graph was obtained over the concentration range of 0.02–27.0 μg mL?1 with a limit of detection of 1 μg L?1 in treatment with 1000 mL of the U(VI) solution in which the preconcentration factor was as high as 400. The method was employed to the preconcentration of U(VI) ions from spiked ground water and synthetic sea water samples.  相似文献   

8.
In this study, we used Au nanoparticle (NP)‐coated silica gel as a solid phase extraction sorbent for the preconcentration of neutral analytes (steroid drugs). The sorbent was fabricated using two alkanethiol self‐assembly processes: one to deposit the Au NPs onto a 3‐aminopropyltrimethoxysilane‐modified silica gel and the other to functionalize the surfaces of the Au NPs. A large volume of the steroid solution was passed through the silica gel to facilitate adsorption mediated by hydrophobic interactions between the steroids and the hydrophobic moieties on the silica gel surface. Extraction of the steroids was accomplished by flushing the silica gel with a low‐polarity solvent. In this preliminary study, we found that the particle size of the silica gel and the number of layers of Au NPs coated on the silica gel both affected the preconcentration performance for the steroids. When using six layers of Au NPs coated on 5–20‐μm silica gel, the detection limits for steroids were below 80 ng L?1; the preconcentration efficiency was over 170‐fold higher than that of the original steroid solution. Our findings provide further evidence that nanotechnology has much to benefit analytical science.  相似文献   

9.
A magnetic solid‐phase extraction sorbent of polypyrrole/silica/magnetite nanoparticles was successfully synthesized and applied for the extraction and preconcentration of sulfonamides in water samples. The magnetite nanoparticles provided a simple and fast separation method for the analytes in water samples. The silica coating increased the surface area that helped to increase the polypyrrole layer. The polypyrrole‐coated silica provided a high extraction efficiency due to the π–π and hydrophobic interactions between the polypyrrole and sulfonamides. Several parameters that affected the extraction efficiencies, i.e. the amount of sorbent, pH of the sample, extraction time, extraction temperature, ionic strength, and desorption conditions were investigated. Under the optimal conditions, the method was linear over the range of 0.30–200 μg/L for sulfadiazine and sulfamerazine, and 1.0–200 μg/L for sulfamethazine and sulfamonomethoxine. The limit of detection was 0.30 μg/L for sulfadiazine and sulfamerazine and 1.0 μg/L for sulfamethazine and sulfamonomethoxine. This simple and rapid method was successfully applied to efficiently extract sulfonamides from water samples. It showed a high extraction efficiency for all tested sulfonamides, and the recoveries were in the range of 86.7–99.7% with relative standard deviations of < 6%.  相似文献   

10.
A new sorbent, thorium oxalate incorporated in silica gel matrix was prepared. This material was characterized by X-ray, Thermo-gravimetric Analysis, surface area and porosity analysis. The material was obtained in the form of granular particles in the mesh size range of 80–150 American Standard of Testing Materials, yielding good liquid flow, when packed in ion exchange column. This sorbent was investigated for the sorption of americium from various aqueous media such as nitric acid, oxalic acid and sulphuric acid by distribution coefficient studies. Column experiments were carried out to study the practical application of this sorbent for removal of americium from oxalic acid-nitric acid solutions. Elution studies were also carried out for the recovery of americium.  相似文献   

11.
A new sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was prepared as sorbent for solid‐phase extraction. The extraction efficiency of the prepared sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was assessed by using three selected organophosphorus pesticides, namely, chlorpyrifos, profenofos, and malathion. Gas chromatography–mass spectrometry was used for detection of organophosphorus pesticides. Several vital parameters were optimized to identify the best extraction conditions. Under the optimum extraction conditions, solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method showed good linearity range (0.05‐1 μg/mL) with coefficient of determination more than 0.995. The limits of detection obtained were in the range of 0.01–0.07 μg/mL and limits of quantification ranging from 0.03 to 0.21 μg/mL. The limits of detection obtained for the developed method were 2.3–6.5× lower than the limits of detection of commercial octadecyl silica sorbent. Real samples analysis was carried out by applying the developed method on red apple and purple grape samples. The developed method exhibited good recoveries (88.33–120.7%) with low relative standard deviations ranging from 1.6 to 3.3% compared to commercial octadecyl silica sorbent, which showed acceptable recoveries (70.3–100.2%) and relative standard deviations (6.3–8.8%). The solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method is presented as an alternative extraction method for determination of organophosphorus pesticides.  相似文献   

12.
采用表面印迹技术, 以Co(Ⅱ)离子作为印迹离子, 二乙烯三胺基丙基三甲氧基硅烷为功能分子, 硅胶为支撑物, 环氧氯丙烷为交联剂, 在硅胶表面制备Co(Ⅱ)离子印迹硅胶材料, 利用红外光谱仪、扫描电镜和热重分析仪等进行了表征, 采用平衡吸附法研究了印迹硅胶材料的吸附性能和选择识别能力. 结果表明, 印迹硅胶材料和非印迹硅胶材料的最大吸附量分别为35.2和6.5 mg/g; 印迹硅胶材料对Co(Ⅱ)离子的吸附行为符合Langmuir模型; 20 min即可达到吸附平衡; 当pH=3.9~7.8时, 印迹硅胶材料保持了较好的吸附容量; 印迹硅胶材料对Co(Ⅱ)离子具有较强的选择性识别能力; 重复使用时性能稳定.  相似文献   

13.
Spherical mesoporous silica–alumina aerogel like beads based on sol–gel technology and the drop wise addition have been synthesized and used as catalyst support for phosphotungstic acid (PWA). Their catalytic performances in the isopropylation of naphthalene with isopropanol were investigated in a batch reactor. It was found that PWA was highly dispersed on the silica–alumina support and their Keggin structure can be retained. In addition, PWA/SiO2–Al2O3 catalyst showed high surface area, both of Lewis acid sites and Brönsted acid sites. Because of having more Brönsted acid sites, silica–alumina supported acid catalysts showed much higher conversion (87.97 %) and selectivity to diisopropylnaphthalenes (41.41 %) and β,β-products (59.82 %) than pure acid and reactive supports in the isopropylation of naphthalene. The catalytic behavior has been discussed in relation with the physical chemical properties of catalysts, reaction and activation temperature and reaction time.  相似文献   

14.
A simple and reliable solid-phase extraction (SPE) method has been developed to synthesise two new sorbents: 6-propyl-2-thiouracil and 5,6-diamino-2-thiouracil physically loaded onto alumina surface, phases I and II, respectively. The synthesis of these new phases has been confirmed by IR-spectroscopy. The surface concentrations of the organic moieties were determined to be 0.182 and 0.562 mmol g?1 for phases I and II, respectively. The evaluation of the selectivity and metal uptake properties incorporated in these two alumina phases were also studied and discussed for 10 different metal ions: Ca(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pb(II) and Ag(I) under different controlling factors. The data obtained clearly indicated that the new SP-extractors have the highest affinity for retention of Hg(II) ions. Selective separation of Hg(II) from Ag(I) as one of the most interfering ion, in addition to the other eight coexisting metal ions under investigation, was achieved successfully using the new sorbents at pH = 9.0 under static conditions. Therefore, Hg(II) exhibits major retention percentage (100.0%) using phase I or II. However, Ag(I) exhibits minor retention percentage equal to 1.33% using phase I and 0.67% using phase II. On the other hand, the retention percentage of the other eight metal ions ranged (0.0–3.08%) using phase I and (0.0–1.54%) using phase II at the same pH. The new phases were applied for separation and determination of trace amounts of Hg(II) and Ag(I) spiked natural water samples using cold vapour atomic absorption spectroscopy and atomic absorption spectroscopy with no matrix interference. The high recovery values of Hg(II) and Ag(I) obtained using phases I and II were ranged 98.9 ± 0.1–99.2 ± 0.05% along with a good precision (RSD% 0.01–0.502%, N = 3) demonstrate the accuracy and validity of the new sorbents for separation and determination of Hg(II) and Ag(I).  相似文献   

15.
Summary Columns of SE-30 and OV-17 on Chromosorb W, Apiezon N on Chromosorb G and Tenax-GC porous polymer were compared for their ability to separate bacterial amines converted to carbethoxy, dinitrophenyl, trimethylsilyl, Schiff base and fluorinated Schiff base derivatives.Tenax-GC performed less well than the other packings with respect to the number of plates and peak resolution. Dinitrophenyl and trimethylsilyl derivatives were both unsatisfactory for analysis of bacterial amines. Schiff bases and their fluorinated derivatives were found to be the most suitable. However, the former were preferred as the use of fluorinated Schiff bases confered little advantage when a flame ionization detector was employed. A maximum of 16 amines was separated, using columns of OV17 on Chromosorb W programmed from 110 °C to 280 °C at 5.5 °C min–1 after an initial holding time of 6 min. The application of the method to analysis of cultures ofProteus mirabilis yielded two amines tentatively identified asiso-butylamine andiso-amylamine.  相似文献   

16.
Xiaoman Jiang  Mancang Liu 《Talanta》2007,72(1):119-125
A novel and simple imprinted amino-functionalized silica gel material was synthesized by combining a surface molecular imprinting technique with a sol-gel process on the supporter of activated silica gel for solid-phase extraction-high performance liquid chromatography (SPE-HPLC) determination of bisphenol A (BPA). Non-imprinted silica sorbent was synthesized without the addition of BPA using the same procedure as that of BPA-imprinted silica sorbent. The BPA-imprinted silica sorbent and non-imprinted silica sorbent were characterized by FT-IR and the static adsorption experiments. The prepared BPA-imprinted silica sorbent showed high adsorption capacity, significant selectivity and good site accessibility for BPA. The maximum static adsorption capacity of the BPA-imprinted and non-imprinted silica sorbent for BPA was 68.9 and 34.0 mg g−1, respectively. The relatively selective factor value of this BPA-imprinted silica sorbent was 4.5. Furthermore, the difference of the retention characteristics of BPA on the C8 SPE column and BPA-imprinted silica SPE (MIP-SPE) was compared. The MIP-SPE-HPLC method showed higher selectivity to BPA than the traditional SPE-HPLC method. At last, the BPA-imprinted polymers were used as the sorbent in solid-phase extraction to determine BPA in water samples with satisfactory recovery higher than 99% (R.S.D. 3.7%).  相似文献   

17.
Aluminum nitride (AlN) fibers were prepared from alumina gel fibers and by heat-treatment in ammonia. The influence of silica on the formation of AlN was investigated. It was shown that phase transformation of alumina (γ-Al2O3 to α-Al2O3) and nitridation reaction took place above 1,100 °C for pure alumina fiber. The addition of a small amount of silica (3 wt%) suppressed the formation of α-Al2O3 and preserved the highly reactive metastable alumina, and nitridation rate was enhanced. Fine grain (~20 nm) AlN fibers were obtained for pyrolysis at 1,150–1,250 °C for 3 h in ammonia, and AlN was identified as the sole crystalline phase.  相似文献   

18.
A method for the separation of zirconium from fission products based on the system 100–200 mesh silica gel—2.0 M nitric acid is described. Decontamination factors are over 500 for 95Nb, 106Ru, 124Sb, 137Cs, molybdate and uranium(VI), and the yield of zirconium is 98 %.  相似文献   

19.
Several new macrocyclic polyether ligands have been prepared for use in the separation of metal ions from aqueous solutions. Four of the crown ethers reported contain 1,2,4-triazole or 4-pyridone protonionizable subcyclic units and lipophilic groups. The remaining crown ethers are not proton-ionizable but contain alkene groups and were prepared for attachment to silica gel. The crowns were prepared by reacting the appropriate glycols with the appropriate ditosylates or dichloride in the case of the 1,2,4-triazole subcyclic unit. The crowns with proton-ionizable and lipophilic substituents were tested in liquid membrane transport systems and some of the crowns with alloxymethyl or butenyl substituents were attached to silica gel. The log K values for the interaction of these silica gel-bound macrocycles with certain metal ions were nearly the same (± 10%) as those for the association of the unbound macrocycles with the same metal ions.  相似文献   

20.
The authors describe a method for the trace determination of copper (II) and lead (II) in water and fish samples using solid-phase extraction via siliceous mesocellular foam functionalised by dithizone. Siliceous mesocellular was functionalised with dithizone, and the resulting sorbent was characterised by scanning electron microscopy, surface area analysis, thermogravimetric/differential thermal analysis and FTIR. Following solid-phase extraction of target ions by the sorbent, copper and lead ions were quantified by flame atomic absorption spectrometry. Factors affecting the sorption and desorption of target ions by the sorbent were evaluated and optimised. The calibration plot is linear in the 1 – 500 μg L?1 copper (II) and 3–700 μg L?1 lead (II) concentration range. The relative recovery efficiency in real sample analysis is in the range from 96 to 102%, and precision varies between 1.7 and 2.8%. It is should be noted that the limits of detection for the copper and lead analysis were 0.8 and 1.6 μg L?1, respectively. Also, the adsorption capacities for copper and lead ions were 120 and 160 mg g?1, respectively. The obtained pre-concentration factor for the lead and copper ions by the proposed solid-phase extraction was 75. The method was successfully applied to the determination of low levels of copper (II) and lead (II) in tap, Caspian sea, Persian gulf and lake water and also their detection in fish samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号