首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A review is presented on recent applications of plasma spectrometric techniques for speciation analysis in beverages. The 3 most common ways of characterizing beverages in addition to elemental speciation are also discussed: total element analysis, isotope ratio, and statistical characterization. To date, most of the elemental characterization in beverages with plasma techniques has been performed in the statistical evaluation of wines and in teas. However, despite the increasing interest in elemental speciation, most of the plasma-based techniques in beverage studies are used for total metal detection and the full capabilities of inductively coupled plasma techniques have yet to be realized.  相似文献   

2.
Trace element speciation in biomedical and environmental science has gained increasing attention over the past decade as researchers have begun to realize its importance in toxicological studies. Several nanomaterials, including titanium dioxide nanoparticles (nano-TiO2), carbon nanotubes (CNTs), and magnetic nanoparticles (MNPs), have been used as sorbents to separate and preconcentrate trace element species prior to detection through mass spectrometry or optical spectroscopy. Recently, these nanomaterial-based speciation techniques have been integrated with microfluidics to minimize sample and reagent consumption and simplify analyses. This review provides a critical look into the present state and recent applications of nanomaterial-based microanalytical systems in the speciation of trace elements. The adsorption and preconcentration efficiencies, sample volume requirements, and detection limits of these nanomaterial-based speciation techniques are detailed, and their applications in environmental and biological analyses are discussed. Current perspectives and future trends into the increasing use of nanomaterial-based microfluidic techniques for trace element speciation are highlighted.  相似文献   

3.
Monolithic supports are increasingly used in the field of chromatography. They are appropriate for different applications (e.g., separation of biomolecules, organic acids and inorganic anions). However, only a few research groups are investigating the potential of using monolithic phases for rapid separation of metal cations and elemental speciation analysis.Monolithic supports based on porous monolithic silica have been successfully applied in separation of alkaline-earth and transition-metal cations in environmental waters and high ionic-strength samples.The present review covers applications of monolithic supports for chromatographic separation of metal cations and the potential for using monolithic chromatography in elemental speciation analysis. We critically evaluate the performances and the advantages of monolithic supports and compare them to conventional particle-packed chromatographic supports.  相似文献   

4.
The use of inductively coupled plasma mass spectrometry (ICP-MS) coupled with separation techniques for the purpose of elemental speciation has recently gained a lot of attention. Much of this is due to ever improving separation capabilities of Chromatographic techniques, the high sensitivity of ICP-MS, and the continuing development of better interface techniques. Additionally, there is a growing awareness of the need to monitor various species of an analyte, rather than just total analyte concentrations, due to their often varying natures. For the sake of learning from different elemental speciation approaches, this review brings together some selected types of elemental speciation which have been recently seen in literature. These include separations using various forms of liquid chromatography, such as reversed phase, reversed phase ion pairing, micelle, ion exchange, and size exclusion. Elemental speciation employing gas Chromatographie separations and supercritical fluid separations are discussed as well as elemental speciation using capillary electrophoresis.  相似文献   

5.
潘怡帆  张锋  高薇  孙悦伦  张森  练鸿振  茅力 《色谱》2022,40(11):979-987
元素的形态决定了其在环境和生物过程中的不同行为,形态分析正在被分析化学、环境化学、地球化学、生态学、农学和生物医学等众多学科所关注。环境和生物样品基质复杂、化学形态多样、含量低且易转化是元素形态分析面临的挑战,因此对元素形态的甄别、定量、生态毒性评价和生理功能研究需要对原生形态进行高选择性识别和高效率分离。固相萃取是一种有效应对以上难题的方法,但现有材料和方法远不能满足要求。离子印迹聚合物可与印迹金属离子特异性结合,具有准确、灵敏、可靠的特点,近年来在元素形态分离富集和分析检测方面得到了较为广泛的应用。鉴于非磁性吸附剂在固相萃取操作时,需要将分散在样品溶液中的吸附材料经过离心或过滤分离,操作比较繁琐费时,而磁性材料易被外部磁场快速分离,因此操作简便快速的磁固相萃取正成为元素形态分离富集中一种极具潜力的方法。这篇综述系统总结了离子印迹技术的最新进展,包括离子印迹技术的原理、离子印迹聚合物的制备方法,并根据元素形态分析中离子印迹磁固相萃取的发展现状,分析了离子印迹技术所面临的挑战,最后对元素形态分析中离子印迹技术的未来发展方向和策略提出了建议,提出开发基于有机-无机杂化聚合的多功能磁性离子印迹纳米复合物用于样品的前处理是建立识别选择性高、分离能力强、吸附容量大、形态稳定性好的形态分析方法的一种重要举措。  相似文献   

6.
Recent progress in the development of electrospray mass spectrometry (ESMS) as a tool for elemental speciation is reviewed. Reports wherein ESMS is used to qualitatively determine the presence of metal ions (inorganic, organometallic and complexed) and non-metallic inorganic species have grown exponentially over the last decade. In addition to elemental speciation, impact in other areas such as gas-phase chemistry, inorganic–organometallic chemistry and biological mass spectrometry has been prolific. The review is structured to cover each of the areas listed above, and also includes a brief introduction, discussion of the electrospray process, discussion of instrumentation and other relevant application areas. An overview of the types of species/complexes studied is given in each section along with a brief discussion of the application objectives and analytical aspects. Analytical considerations for the development of ESMS as a tool for elemental speciation are also raised, including, application, quantitation, sensitivity, limitations and future directions. The impact of speciation strategies involving stand-alone ESMS, ESMS coupled with on-line separation techniques and the inclusion of ESMS in dual (multiple) technique strategies are presented. High backgrounds due to chemical noise and signal suppression (matrix effects) appear to be two important factors limiting sensitive detection of most analytes. The use of sample pre-treatment, pre-concentration or separation techniques is necessary to alleviate these problems. Although ESMS currently suffers from a number of limitations, continued instrumentation and methods development will improve its capability and diversify the impact of ESMS as a tool for elemental speciation.  相似文献   

7.
电化学分析方法在元素形态分析中的应用   总被引:10,自引:0,他引:10  
孙微  王磊  李一峻  何锡文 《分析化学》2004,32(4):541-545
对电分析方法在常见元素形态分析中的应用进行了评述,并展望了电分析技术在形态分析中的应用前景。引用文献83篇。  相似文献   

8.
Capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) and electrospray (ES) or ion spray (IS) mass spectrometry (MS) are recently introduced techniques for elemental speciation. Both techniques have the potential for rapid elemental speciation with low detection limits. Examples of the use of CE-ICP-MS for elemental speciation of positive, neutral and negative species are discussed. Issues in interfacing CE and ICP-MS are considered briefly. The potential advantages and disadvantages of laminar flow in CE-ICP-MS are examined. Potential difficulties in CE-ICP-MS including loss of sample, chemical matrix effects and changes in speciation during separation are discussed. The interpretation of ES or IS-MS spectra and analysis of complex mixtures are considered. Calibration and chemical matrix effects are assessed. Potential pitfalls of interpreting bare metal ion spectra as elemental analysis are discussed. The need for fundamental understanding of the processes that control ES and IS-MS signals is examined. High conductivity samples currently present difficulties for CE-ICP-MS or ES and IS-MS.  相似文献   

9.
Liquid chromatography-inductively coupled plasma mass spectrometry.   总被引:3,自引:0,他引:3  
The technique of coupling liquid chromatography to inductively plasma mass spectrometry (ICP-MS) is reviewed. A brief introduction to the ICP-MS instrument is given as well as methods to couple the two analytical instruments together. The various types of LC that have been used with ICP-MS detection are discussed and advantages over traditional methods of detection are highlighted, such as the improvements in sensitivity and selectivity. Several applications that have been described in the literature are reviewed. An outlook for the future of LC-ICP-MS, particularly with regard to elemental speciation is given.  相似文献   

10.
In recent years, there has been growing interest in the field of mercury speciation analysis. Mercury speciation analysis of water or urine matrices are necessary for solving various environmental, biological or clinical problems. Due to the complexity of sample matrices and the low levels of mercury species, an extraction step, such as liquid-liquid extraction or solid phase cartridge extraction, is required for Hg speciation analysis to isolate and enrich analyte species from sample matrices. As a new experimental configuration, disks or membranes for solid phase extraction (SPE) have been utilized in recent years for the preparation of many different organic and environmental samples. However,the literature survey revealed that solid-phase disk extraction has received little attention in the field of elemental speciation analysis.  相似文献   

11.
Tris(N-(pyrrol-2-ylmethyl)-N-butyldithiocarbamato-S,S′)cobalt(III) (1) and tris(N-methylferrocenyl-N-(2-phenylethyl)dithiocarbamato-S,S′)cobalt(III) (2) have been synthesized and characterized by elemental analysis and spectroscopy (IR, UV-vis and NMR). The elemental analysis and IR, 1H and 13C NMR spectra are consistent with the formation of the cobalt(III) complexes with dithiocarbamate ligands. The anion binding properties of 1 and 2 based on host-guest interaction have been examined with the use of cyclic voltammetry.This study showed that both complexes preferred to bind with I-compared to other halides. 2 has been used as precursors for the preparation of cobalt-iron sulfide nanoparticles. TEM image of cobalt-iron sulfide nanoparticles showed that the particles are spherical. The elemental compositions of the nanoparticles were confirmed by energy dispersive X-ray spectroscopy. IR spectral studies on nanoparticles confirm the presence of capping agent (triethylenetetramine). The nanoparticles were explored as photocatalysts to study the degradation of dyes using methylene blue and rhodamine-B in aqueous solution under UV irradiation. The cobalt-iron sulfide works as an efficient photocatalyst for degradation of rhodamine-B.  相似文献   

12.
The elemental composition of seasoning products, like spices garlic and onion, has been reviewed paying special attention to methods proposed in the literature to determine specific elements or as much as possible components of these products which are widespread used in food preservation or food flavouring and can contribute to the intake of both, essential and toxic elements. Sample treatment and metal speciation aspects have been critically revised concerning onion, garlic and pepper (the most commonly studied products).  相似文献   

13.
Some basic and practical aspects of interfacing capillary electrophoresis to inductively coupled plasma-mass spectrometry (CE-ICP-MS) are reviewed in this article with emphasis on the use of this hyphenated technique for elemental speciation analysis. The principles behind the techniques of both CE and ICP-MS are introduced. The interfacing of CE to ICP-MS is discussed including several devices and nebulizers reported in literature. A brief account of their advantages and limitations is given. The various CE-ICP-MS applications for elemental speciation analysis are also reviewed. Some issues concerning the future of CE-ICP-MS for the elemental speciation analyses are discussed.  相似文献   

14.
Despite the increasing number of articles on trace elemental speciation with magnetic solid phase extraction (MSPE), there are no dedicated reviews that cover the group of elements with most related literature, and hence the need for this one. This article provides a comprehensive review of the relevant literature related to Cr, Hg, As, Se, and other metals and metalloids with a special focus on the sorbents, species determined, interactions involved between them and applications, mainly to environmental, food and biological samples. Moreover, this review covers the analysis of metallic nanoparticles (NPs) and the ions that are generated from them as a new facet of speciation. The analytical performance of the methods is addressed from a presentative and critical point of view and, finally, future trends and the related challenges are shown.  相似文献   

15.
Separation techniques coupled to inductively coupled plasma mass spectrometry (ICP-MS) is reviewed. ICP-MS technique is described briefly. Coupling of the different separation techniques are described, together with the most common applications used for each technique that has been described in the literature. An overview for the future of separation techniques coupled to ICP-MS with regard to elemental speciation is discussed.  相似文献   

16.
Inductively coupled plasma-mass spectrometry (ICP-MS) has definitely emerged as a powerful technique for total element determination and as a sensitive and selective detector in hyphenated methods for speciation analyses of elements in foods. In this review, the analytical challenges of elemental analysis of food and agricultural matrixes are discussed and several applications are examined. Selected examples illustrate the analytical approaches being used so far to address specific issues in various areas of food and nutrition research. The applications discussed include studies on dietary intake, element metabolism in man, transfer of elements through the food chain, effects of food processing and domestic preparation, and authenticity and origin assessment. The use of ICP-MS in the field of analytical quality assurance, food control, evaluation of food contact materials, and radionuclide contamination is also examined. Finally, the hyphenated techniques with ICP-MS detection used for elemental speciation in food are reviewed, and an overview of the main applications currently in the literature is presented. Throughout, recent trends and analytical developments likely to have a major impact on food-related areas are highlighted.  相似文献   

17.
The coupled technique LC-HG-QCAAS has been used to perform the speciation of arsenite, arsenate, monomethylarsonate and dimethylarsinate in aqueous samples. An optimization of the operating conditions, especially those for atomization, is described. The analytical signals have been collected and processed using a microcomputer. Results of limits of detection, precision, recovery and linear ranges when using peak area and peak height are reported. The technique can be considered cheap enough to be applied to metal speciation analysis in most laboratories.  相似文献   

18.
A method is described for the selective determination of concentrations of elemental selenium and pyrite-selenium in sediments. A 1 M sodium sulfite solution is used to solubilize elemental selenium and a Cr(II) solution releases selenium in pyrite. The accuracy of the methods was evaluated by using various selenium compounds. The detection limits for the elemental and pyrite-selenium procedures are 0.001 and 0.025 μg Se per gram of sediment, respectively. The relative standard deviationis < 10% for elemental selenium and < 16% for pyrite-selenium. These and other procedures were used for selenium speciation in marine and freshwater sediments.  相似文献   

19.
This work represents a first systematic approach to the size-based elemental quantification and size estimation of metal(loid) oxide nanoparticles such as silica (SiO2) in a real food matrix using asymmetric flow field-flow fractionation coupled online with inductively coupled plasma mass spectrometry (ICP-MS) and multi-angle light scattering (MALS) and offline with transmission electron microscopy (TEM) with energy-dispersive X-ray analysis (EDAX). Coffee creamer was selected as the model sample since it is known to contain silica as well as metal oxides such as titania at the milligramme per kilogramme levels. Optimisation of sample preparation conditions such as matrix-to-solvent ratio, defatting with organic solvents and sonication time that may affect nanoparticle size and size distribution in suspensions was investigated. Special attention was paid to the selection of conditions that minimise particle transformation during sample preparation and analysis. The coffee creamer matrix components were found to stabilise food grade SiO2 particles in comparison with water suspensions whilst no significant effect of defatting using hexane was found. The use of sample preparation procedures that mimic food cooking in real life was also investigated regarding their effect on particle size and particle size distribution of silica nanoparticles in the investigated food matrix; no significant effect of the water temperature ranging from ambient temperature to 60 °C was observed. Field-flow fractionation coupled to inductively coupled plasma-mass spectrometry (FFF-ICP-MS) analysis of extracts of both unspiked coffee creamer and coffee creamer spiked with food grade silicon dioxide, using different approaches for size estimation, enabled determination of SiO2 size-based speciation. Element-specific detection by ICP-MS and post-FFF calibration with elemental calibration standards was used to determine the elemental composition of size fractions separated online by FFF. Quantitative data on mass balance is provided for the size-based speciation of the investigated inorganic nano-objects in the complex matrix. The combination of FFF with offline fractionation by filtration and with detection by ICP-MS and TEM/EDAX has been proven essential to provide reliable information of nanoparticle size in the complex food matrix.
Figure
Characterisation of silica nanoparticles in a coffee creamer matrix using FFF-based methodology  相似文献   

20.
PtPd bimetallic nanoparticles containing an average of 180 atoms and composed of seven different Pt:Pd ratios have been prepared within sixth-generation, hydroxyl-terminated, poly(amidoamine) dendrimers. Transmission electron microscopy indicates that the sizes of all seven nanoparticle compositions are within +/-0.2 nm of one another and the calculated size. Single-particle energy-dispersive spectroscopy shows that the elemental composition is determined by the ratio of the Pt and Pd precursor salts used to prepare the nanoparticles. Cyclic voltammetry and rotating disk voltammetry measurements show that the Pt:Pd ratio of the nanoparticles determines their efficiency for the oxygen reduction reaction (ORR). The maximum activity for the ORR occurs at a Pt:Pd ratio of 5:1, which corresponds to a relative mass activity enhancement of 2.4 compared to otherwise identical monometallic Pt nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号