首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.

Single-crystal x-ray structure determinations have been recorded at 295 K for the dithiocarbamate metal compounds [Co(Et2dtc)3], [Co(nPr2dtc)3], [Pd(iPr2dtc)2] and [Pd(Et2dtc)2]. The stability constants(K) in EtOH of dialkyldithiocarbamate metal complexes [M(R2dtc)n] (M=Co, Ni, Pd. R=Me, Et, iPr, nPr. n=2, 3. dtc=dithiocarbamate) are determined by UV-vis data. The stability of the metal complexes increases in the order: Co<Ni<Pd. The effects of alkyl groups on the stability of [M(R2dtc)2] (M=Ni and Pd) increase in the order: Me<Et<nPr<iPr, and [Co(R2dtc)3] decrease in the order: Et>iPr>nPr>Me. The results obtained from this study confirm that the stability due to alkyl groups may be partly attributed to changes in the residual positive charge and also partly to steric hindrance of branched alkyl-groups. The comparison between the solid and solution states shows that the [M(R2dtc)2] (M=Pd, Ni) complexes have similar changes in M-S distance and stability with change in alkyl group. [M(iPr2dtc)2] has the shortest M-S distance and the highest stability in solution.  相似文献   

2.
Cobalt(II) complexes of N-methyl phenyl, 1-phenylpiperazyl, and morpholinyl dithiocarbamates have been synthesized and characterized by UV–Visible, FTIR, 1H-, 13C-NMR, and mass spectrometry. The spectroscopic data indicated that two ligands coordinated in bidentate chelating to the metal ion to form four-coordinate cobalt(II) complexes (13), which was confirmed by mass analysis (TOF MS ES+) of the complexes with m/z [M]+ = 450.98, 382.94, and 382.94 for 1, 2, and 3, respectively. Single crystal analysis of 2A and 3A show centrosymmetric mononuclear cobalt(III) bonded to three dithiocarbamate ligands forming a distorted octahedral geometry, indicating the cobalt(II) undergoes aerial oxidation to cobalt(III) during recrystallization. In addition, 2A crystallized with one solvated molecule of toluene. The redox behaviors of the complexes were studied by cyclic and square wave voltammetry in dichloromethane; the result revealed a metal centered redox process consisting of a one-electron quasi-reversible process assigned to Co(III)/Co(IV) oxidation and a corresponding Co(IV)/Co(III) reduction. Randles–Sevcik plots (anodic peak current versus the square root of the scan rate (Ip,a versus ν1/2)) for the redox couples revealed diffusion-controlled behavior.  相似文献   

3.
Extraction of cobalt(II) ion from aqueous solution was studied using silica gel grafted with dithiocarbamate ligand (Si–dtc), which was prepared by reacting silica gel with γ-aminopropyltriethoxysilane followed by alkaline carbon disulfide. 29Si MAS NMR, IR spectra were taken to establish the grafting of dithiocarbamate ligand on silica gel. This modified surface contains 0.37 mmol g−1 of the ligand sites available for the extraction of cobalt. The sorbent extracts cobalt only when the pH of the aqueous phase is above 7 and the extraction process does not follow ideal ion-exchange mechanism. The electronic absorption spectra of cobalt present in the sorbent phase suggested the oxidation of Co(II) to Co(III). Kinetic data were fitted to surface complexation model and the rate constant (ks) for such model was found to vary from 1.5×10−3 to 5.82×10−3 l mg−1 min−1 depending on the initial concentration of cobalt. An estimate of enthalpy and entropy changes accompanying the extraction was obtained by temperature variation method. The increase in the overall entropy of the system seems to favour the extraction of cobalt by Si–dtc.  相似文献   

4.
A new ligand dibenzo[h]quinolineno[1,3,7,9] tetraazacyclododecine-7,15 (14H, 16H)-dibenzene (L) and its Co(II)/Cu(II) metal complexes of type [MLX2] (Where (M = Co(II) (5), Cu(II) (6) and X = Cl) were synthesized and are well characterized by FT-IR, 1H-NMR, FAB mass elemental analysis, and electronic spectral data. The role of the cobalt/copper metals in photo-induced DNA cleavage reactions was explored by designing complex molecules having macrocyclic structure. Finally, we have shown that photocleavage of plasmid DNA is more efficiently enhanced when this macrocyclic ligand is irradiated in the presence of copper(II) than that of cobalt metal.  相似文献   

5.
Abstract

The reaction between 5,5-dimethyl-2-thioxoimidazolidin-4-one (H2L) and [PdCl4]2- has been studied in aqueous solution by potentiometric and spectrophotometric measurements. In the presence of the palladium salt, H2L is completely monodeprotonated (HL?); from spectrophotometric measurements, only two complexes having 1:1 and 1:2 Pd/ligand mol ratios have been identified. Potentiometric titrations, carried out on solutions with 1:1, 1:2, 1:3 and 1:4 metal/ligand mol ratios, show that these complexes must be formulated as Pd(HL)2 and [Pd2(HL)2(μ-H2O)(μ-OH)]+. Ionization constants of the pure ligand and formation constants of the complexes give pH distribution curves of the various species and the spectra of the two complexes. From MeOH, S-coordinated Pd(H2L)nCl2 (n = 2–4) complexes have been separated in the solid state; from water, two complexes of formula Pd(H2L)(HL)Cl and Pd(HL)Cl have been obtained with HL? N,S-coordinated to the metal.  相似文献   

6.
A novel ambidentate dipeptide conjugate (H(L1)) containing N-donor atoms of the peptide part and an (O,O) chelate at the hydroxypyridinone (HP) ring is synthesized and characterized. It is hoped that this chelating ligand can be useful to obtain multitargeted Co(III)/Pt(II) dinuclear complexes with anticancer potential. The Pd(II) (as a Pt(II) model but with faster ligand exchange reactions) binding strength of the ligand was studied in an aqueous solution with the combined use of pH-potentiometry and NMR. In an equimolar solution, (L1) was found to bind Pd(II) via the terminal amino and increasing number of peptide nitrogens of the peptide backbone over a wide pH range. At a 2:1 Pd(II) to ligand ratio, the presence of [Pd2H–x(L1)] (x = 1–4) species, with high stability and with the coordination of the (O,O) chelating set of the ligand, was detected. The reaction of H(L1) with [Co(tren)]3+ (tren = tris(2-aminoethyl)amine) indicated the exclusive binding of (L1) via its (O,O) donor atoms to the metal unit, while treatment of the resulting Co-complex with Pd(II) afforded the formation of a Co/Pd heterobimetallic complex in solution with an (NH2, Namide) coordination of Pd(II). Shortening the peptide backbone in H(L1) by one peptide unit compared to the structurally similar ambidentate chelator consisting of three peptide bonds resulted in the slightly more favorable formation of the N-coordinated Pd(II) species, allowing the tailoring of the coordination properties.  相似文献   

7.
A method has been developed to enhance the liquid membrane extraction of heavy metals such as cobalt, copper and nickel. The method consists of introducing anion ligands, such as acetate, to the aqueous solution containing metal ions. In the absence of a ligand in the aqueous phase, it takes about 15 min for a 80% cobalt recovery, while only 2 min are needed for a 95% recovery with the addition of 0.1 M acetate in the feed solution. The ligand effects on liquid membrane extraction are rationalized in terms of the labile nature of the ligand—metal complexes, the distribution coefficients of the metal ions, the interfacial and surface tensions, and by the nuclear magnetic r̀esonance (NMR) spectra of the metal—organic complexes.  相似文献   

8.
The azo dye ligand N-diaminomethylene-4-(3-formyl-4-hydroxy-phenylazo)-benzenesulfonamide (HL) and Cu(II), Co(II), and Mn(II) coordination polymers were synthesized in addition to a non-polymeric Pd(II) complex. In all complexes, the ligand bonds to the metal ion through the formyl and α-hydroxy oxygen atoms. The sulfonamide oxygen also coordinates to the metal. The complexes are formulated as [ML2] n , where M?=?Cu(II), Co(II), and Mn(II), and [ML(Cl)(H2O)], where M?=?Pd(II). On the basis of spectral studies and magnetic susceptibility measurements, an octahedral geometry was assigned to Co(II) and Mn(II) complexes, tetragonally elongated octahedral geometry for Cu(II) complex, while the Pd(II) complex was found to be square planar. Crystallization of Cu(II) complex from DMF afforded single crystals of general formula {[Cu(L)2]?·?3DMF} n (2). X-ray structural analysis of 2 revealed that each Cu(II) adopts elongated octahedral geometry affording 1-D chains. The chains are connected by hydrogen bonds, resulting in the formation of 2-D supramolecular assemblies. The crystal structure of HL has also been determined and discussed. Cyclic voltammetric behavior of the ligand and some complexes are also discussed.  相似文献   

9.

3-Carboxylacetonehydroxamic acid (CAHA) and its iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized and characterized by elemental analysis, UV-Vis and IR spectra and magnetic susceptibility. The pK a1 and pK a2 values of the ligand in aqueous solution were found to be 6.5 ± 0.1 and 8.6 ± 0.1, which correspond to dissociation of carboxyl and hydroxamic protons, respectively. The dianion CAH acts as a tetradentate ligand through the hydroxamate and carboxylate groups and coordinates to the divalent metal ions, forming coordination polymers with a metal-to-ligand ratio of 1 : 1 in the solid state. FTIR spectra and thermal decomposition of the ligand and its metal complexes were recorded and briefly discussed. The electrochemical behavior of the complexes was investigated by square wave voltammetry and cyclic voltammetry at neutral pH. In contrast to the solid state, the iron(II) and copper(II) cations form stable complex species with a metal-to-ligand ratio of 1 : 2 in solution. The iron(II), cobalt(II) and nickel(II) complexes show two-electron irreversible reduction behavior, while the copper(II) and zinc(II) complexes undergo quasi-reversible and reversible electrode reactions, respectively. The stability constants of the complexes were determined by square wave voltammetry.  相似文献   

10.
The cobalt(II) and zinc(II) complexes of poly(3-nitrobenzylidene-1-naphthylamine-co-succinic anhydride) were synthesized by the reaction of THF solution of the alternating copolymer with aqueous solution of cobalt(II) and zinc(II) acetates. The metal complexes were characterized by elemental analysis, magnetic measurements, IR, UV–Vis. and 1H NMR spectral studies. The elemental analysis of the metal polymer complexes suggests that the metal to ligand ratio is 1:2. Conductance measurements indicate the non electrolytic nature of both the complexes. Electronic spectrum and magnetic moment studies are taken into account for the geometry of cobalt complex. Thermal analysis data of the two metal–polymer complexes were reported. XRD data revealed the nanocrystalline nature of both the complexes. The SEM studies give the surface morphology of the complexes.  相似文献   

11.
A new, very stable dithiocarbamate, bis(n-butyl-2-naphthylmethyldithiocarbamate) zinc(II), has been synthesized and its use in trace metal determination by high-performance liquid chromatography (h.p.l.c.) has been investigated. Metal complexes of this ligand are thermodynamically stable and kinetically inert at the 1 × 10-8 M level. Various metal complexes including nickel(II), iron(III), copper(II), mercury(II), and cobalt(II) have been “baseline” separated by nonpolar stationary-phase h.p.l.c. The detection limits are about 1–2 ng with a variable-wavelength absorbance detector.  相似文献   

12.
《Analytical letters》2012,45(10):1557-1565
Abstract

A spectrometric study of the reaction between Pd(II), Fe(III) and Pt(IV) ions, and Mandelazo I was carried out. The optimum conditions favouring the formation of the complexes are extensively investigated. The stoichiometry of the complexes formed in solution (1:2, 1:1, 1:1), their apparent stability constants (5.45 × 109, 2.39 × 106, 4.12 × 105) and the ranges for obedience to beer's law (0.2 – 6.4, 0.25 – 7.0, 1.5 – 42.0 μg/mL) are reported for Pd(II), Fe(III) and Pt(IV), respectively. The effect of some metal ions including Cu(II), Zn(II), Mn(II), Cd(II), Hg(II), Co(II), Ni(II), Be(II), Al(III), Th(IV) and U(VI), on the maximum absorbance of the formed complexes was also investigated.  相似文献   

13.
Abstract

Dinucleating 24-membered hexaazadiphenol macrocyclic ligand 3,6,9,17,20,23-hexaaza-29,30-dihydroxy-13,27-dimethyl-tricyclo[23,3,1,111,15] triaconta-1(29), 11,13,15(30),25,27-hexaene (L or BDBPH), is prepared by the NaBH4 reduction of the Schiff base obtained from [2+2] template condensation of 2,6-diformyl-p-cresol with diethylenetriamine. The ligand maintains dinuclear integrity for cobalt (II) while facilitating the formation of bridging phenolate dicobalt cores. Potentiometric equilibrium studies indicate that a variety of protonated, mononuclear and dinuclear cobalt (II) complexes form from p[H] 2 through 11 in aqueous solution. The protonation constants of this ligand and stability constants of the 1:1, 1:2 ligand: cobalt(II) complexes were determined in KCl supporting electrolyte (μ = 0.100 M) at 25°C. The mechanism for the formation of dinuclear dioxygen cobalt(II) complexes is also described. The stability constants of mononuclear and dinuclear cobalt complexes were determined under nitrogen. Preliminary results show that the dinuclear dioxygen cobalt (II) complexes do not catalyze hydroxylation of adamantane in the presence of H2S as two-electron reductant.  相似文献   

14.
An asymmetric bidentate Schiff-base ligand (2-hydroxybenzyl-2-furylmethyl)imine (L–OH) was prepared. Three complexes derived from L–OH were synthesized by treating an ethanolic solution of the appropriate ligand with an equimolar amount of metallic salt. Three complexes, Cu2(L–O?)2Cl2 (1), Ni(L–O?)2 (2) and Co(L–O?)3 (3), have been structurally characterized through elemental analysis, IR, UV spectra and thermogravimetric analysis. Single crystal X-ray diffraction shows metal ions and ligands reacted with different proportions 1?:?1, 1?:?2 and 1?:?3, respectively, so copper(II), nickel(II), and cobalt(III) have different geometries.  相似文献   

15.
Anodic oxidation of cobalt and copper metals in an anhydrous acetone solution of pyridine-2-(1H)-thione-3-cyano-4-(2-bromophenyl)-5,6-ring fused cycloheptane (HL1) and its derivatives, (HL2), (HL3), (HL4), (HL5), (HL6), (HL7), (HL8), and (HL9) yields complexes of composition [M(L)2·(H2O)2]·n H2O and [M(L)2·(acetone)2], where M = Co(II) or Cu(II) and L is the ligand. Also, reaction of an aqueous ethanolic solution of Co(Ac)2·2H2O with the previous ligands was prepared. Elemental analysis, and infrared and electronic spectral data are presented to confirm the formulation of the amorphous complexes. The spectral data indicate that the ligands are coordinated to the metal via the thioenol sulfur atom and the nitrogen atom of cyano groups. The ligands reacts in the enol form through the anodic dissolution of the ligands or during the reaction with metal salts. The ligand field parameters and crystal field splitting energies, Δo, for different cobalt metal complexes were calculated.  相似文献   

16.
Summary Paper chromatography of cobalt, palladium, uranium, thorium, and zirconium/1-nitroso-2-hydroxy-3-naphtholates which are quantitatively precipitated, has been studied. As most of the complexes were not soluble in organic solvents, their hydrochloric acid solutions and solution of the cobalt, palladium, and uranium complexes in ammonium hydroxide were used for spotting. A large number of developing solvents were tried both on plain and salt-impregnated papers. A solvent mixture containing 60% acetone, 38% isobutyl alcohol and 2% 12N HCl, by volume was found suitable for the resolution of a mixture of complexes of cobalt, palladium, and uranium on plain paper. Thorium and zirconium complexes, however, did not move appreciably with any of the solvent mixtures tried. The paper impregnated with salt solutions did not show any improvement in the separation. The effect of HCl in the above solvent mixture on the separation of cobalt, palladium, and uranium, was also studied. It was observed that a small amount of HCl was necessary in this developing solvent for the migration of the metals, a large excess of this acid, increases their Rf values and these are brought so close that the separation of the metals becomes difficult. The colour of the cobalt, palladium, and uranium spots on the developed chromatograms indicated that the metals migrated as their complexes. Similar experiments were done with free metals ions, which gave different Rf values and this confirmed the fact that it was the metal complexes that moved and these complexes were stable under the conditions of the experiment. Precipitation of Co, Pd and U with 1-nitroso-2-hydroxy-3-naphthoic acid is quantitative and the paper chromatographic experiment affords a convenient method of concentrating the metal ions.Part IV: See Z. anal. Chem. 155, 241 (1957).  相似文献   

17.
Abstract

The protonation constants of tetraethylenepentaamineheptaacetic acid, TPHA, were determined by potentiometric titration in aqueous solution at an ionic strength of 0.10 M KNO3 and at 25°C. The formation constants of various metal-TPHA complexes were also obtained by titrating mixtures of metal to ligand in molar ratios of 1 :1 and 2:1. Calculations were performed with the computer program BEST. Individual stability constants are reported for Co(II). Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and Pb(II) with TPHA as well as their related pro-tonated species. The stabilities of the 1:1 complexes parallel to those of similar complexes with DTPA and TTHA. However the 2: 1 complexes have significantly larger log K ML's than their TTHA counterparts. The extra stability of the 2:1 metal-TPHA complexes is explained in terms of ligand denticity and steric effects. Mercury(II)-TPHA complexes exhibited the highest formation constants and the copper-TPHA complexes had slightly higher log K ML's than those for Co(II), Ni(II), Zn(II), Cd(II) and Pb(II).  相似文献   

18.
η2 π-Complexes of Ge2H2 with the organometallic fragments V(PH3)2(I)(CO)2, Cr(CO)4, Co(PH3)2(Cl) and M(PH3)2 (M = Ni, Pd, Pt) have been studied at the B3LYP level using the SBKJC relativistic effective core potentials and their associated basis sets on metals and iodine, and the 6-31G(d) basis set on all other elements. The transition metal fragments of V, Cr, Co, Ni, Pd and Pt were chosen based on known alkyne compounds. All the complexes are local minima for both the HGeGeH and GeGeH2 isomers of the Ge2H2 ligand. The complexes containing GeGeH2 isomer as a ligand are lower in energy than those with the HGeGeH ligand (except in the V complex in which the difference is only 1.0 kcal/mol). There is a net charge transfer from ligand to metal in complexes V-Co and from metal to ligand in late transition metal complexes (Ni-Pt).  相似文献   

19.
Metal complexes of some divalent metal ions (Co, Ni, Cu, Zn, Hg, and Pd) with isatin-β-thiosemicarbazone (ITS) as the Schiff base have been investigated potentiometrically and spectrophotometrically. The dissociation constants of the ligand and formation constants of the metal complexes, as well as the corresponding thermodynamic functions (ΔG, ΔH and ΔS) have been determined at different temperatures in ethanol—water solution. The full stability constants were also evaluated spectrophotometrically by the Job method. The experimental results indicate that Cu(II), Zn(II), Pd(II), and Hg(II) form one-to-one molecular complexes (ML) with the studied ligand, whereas Co(II) and Ni(II) form both ML and ML2 species.  相似文献   

20.
Abstract

The protonation constants of pentaethylenehexaamineoctaacetic acid, PHOA, were determined by potentiometric titration in aqueous solution at an ionic strength of 0.10 M KNO3 and at 25°C. The formation constants of various metal-PHOA complexes were also obtained by titrating mixtures of metal to ligand in molar ratios of 1:1 and 2:1. Calculations were performed with the computer program BEST. Individual formation constants are reported for Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and Pb(II) with PHOA as well as their related protonated species. The stabilities of the 1:1 and 2:1 complexes are similar in many respects to complexes formed with tetraethylenepentaamineheptaacetic acid (TPHA). The similarities in the stabilities of both the 1:1 and 2:1 complexes with PHOA and those with TPHA are explained in terms of ligand denticity and steric effects. Mercury(II)-PHOA complexes exhibited the highest formation constants, followed by copper(II)-PHOA complexes which had higher log K ML's than those for Co(II), Ni(II), Zn(II), Cd(II) and Pb(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号