首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Hui Chen  Zan Lin  Lin Mo 《Analytical letters》2017,50(16):2608-2618
Rapid and objective detection of cancer is crucial for successful treatment. Near-infrared (NIR) spectroscopy is a vibrational technique capable of optically probing molecular changes associated with disease. The purpose of this study was to explore NIR spectroscopy for discriminating cancer from normal colorectal tissues. A total of 110 tissue samples from patients who underwent operations were characterized in this study. The popular ensemble technique AdaBoost was used to construct the diagnostic model. A decision stump was used as the weak learning algorithm. Adaboost with decision stump, an ensemble of weak classifiers, was compared with the most suitable single model, a strong classifier. Only the 20 most significant variables were selected as inputs for the model based on measured defined variable importance. Using an independent test set, the single strong classifier provided diagnostic accuracy of 89.1%, sensitivity of 100%, and specificity of 78.6%, whereas the ensemble of weak stumps provided accuracy of 96.3%, sensitivity of 96.3%, and specificity of 96.3% for distinguishing cancer from normal colorectal tissues. Therefore, NIR spectroscopy in combination with AdaBoost with decision stumps has demonstrated potential for rapid and objective diagnosis of colorectal cancer.  相似文献   

2.
Near-infrared (NIR) spectroscopy has been successfully utilized for the rapid identification of green, black and Oolong teas. The spectral features of each category are reasonably differentiated in the NIR region, and the spectral differences provided enough qualitative spectral information for identification. Support vector machine as a pattern recognition was applied to attain the differentiation of the three tea categories in this study. The top five latent variables are extracted by principal component analysis as the input of SVM classifiers. The identification results of the three tea categories were achieved by the RBF SVM classifiers and the polynomial SVM classifiers in different parameters. The best identification accuracies were up to 90%, 100% and 93.33%, respectively, when training, while, 90%, 100% and 95% when test. It was obtained using the RBF SVM classifier with sigma=0.5. The overall results ensure that NIR spectroscopy combined with SVM discrimination method can be efficiently utilized for rapid and simple identification of the different tea categories.  相似文献   

3.
虞科  程翼宇 《分析化学》2006,34(4):561-564
将最小二乘支持向量机(LSSVM)用于近红外(NIR)光谱分析,建立一种新型的NIR光谱快速鉴别方法。以丹参药材道地性鉴别为例,对其NIR漫反射光谱进行主成分分析后,运用LSSVM法建立NIR光谱非线性分类模型,对丹参药材道地性进行快速鉴别。将本方法与经典SVM和BP神经网络法相比较,结果表明,本法判别准确率高,计算时间少,可推广应用于中药等天然产物质量快速鉴别。  相似文献   

4.
烟草组分的近红外光谱和支持向量机分析   总被引:1,自引:0,他引:1  
测定了120个产自福建、安徽和云南烟草样品的近红外光谱. 在利用支持向量机(SVM)技术建立其定量、定性分析模型之前, 用小波变换技术对光谱变量进行了有效的压缩, 然后采用径向基核函数建立了75个烟草样品的分类模型, 同时建立了总糖、还原糖、烟碱和总氮4个组分的定量分析模型, 并利用45个烟草样品对模型进行了检验. 仿真实验表明, 建立的SVM分类模型分类准确率达到100%, 而4个组分的定量分析模型的预测决定系数(R2)、预测均方差(RMSEP)和平均相对误差(RME)3个指标值显示其模型泛化能力非常强, 预测效果良好, 可见这是一种有效的近红外光谱的建模分析方法.  相似文献   

5.
It is important to monitor quality of tobacco during the production of cigarette. Therefore, in order to scientifically control the tobacco raw material and guarantee the cigarette quality, fast and accurate determination routine chemical of constituents of tobacco, including the total sugar, reducing sugar, Nicotine, the total nitrogen and so on, is needed. In this study, 50 samples of tobacco from different cultivation areas were surveyed by near-infrared (NIR) spectroscopy, and the spectral differences provided enough quantitative analysis information for the tobacco. Partial least squares regression (PLSR), artificial neural network (ANN), and support vector machine (SVM), were applied. The quantitative analysis models of 50 tobacco samples were studied comparatively in this experiment using PLSR, ANN, radial basis function (RBF) SVM regression, and the parameters of the models were also discussed. The spectrum variables of 50 samples had been compressed through the wavelet transformation technology before the models were established. The best experimental results were obtained using the (RBF) SVM regression with gamma=1.5, 1.3, 0.9, and 0.1, separately corresponds to total sugar, reducing sugar, Nicotine, and total nitrogen, respectively. Finally, compared with the back propagation (BP-ANN) and PLSR approach, SVM algorithm showed its excellent generalization for quantitative analysis results, while the number of samples for establishing the model is smaller. The overall results show that NIR spectroscopy combined with SVM can be efficiently utilized for rapid and accurate analysis of routine chemical compositions in tobacco. Simultaneously, the research can serve as the technical support and the foundation of quantitative analysis of other NIR applications.  相似文献   

6.
《Analytical letters》2012,45(16):2398-2411
In this paper, three different types of biodiesel, which were synthesized from peanut, corn, and canola oils, were characterized by positive-ion electrospray ionization (ESI) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Different biodiesel/diesel blends containing 2–90% (V/V) of each biodiesel type were prepared and analyzed by near infrared spectroscopy (NIR). In the next step, the chemometric methods of hierarchical clusters analysis (HCA), principal component analysis (PCA), and support vector machines (SVM) were used for exploratory analysis of the different biodiesel samples, and the SVM was able to give the best classification results (correct classification of 50 peanut and 50 corn samples, and only one misclassification out of 49 canola samples). Then, partial least squares (PLS) and multivariate adaptive regression splines (MARS) models were evaluated for biodiesel quantification. Both methods were considered equivalent for quantification purposes based on the values smaller than 5% for the root mean square error of calibration (RMSEC) and root mean square of validation (RMSEP), as well as Pearson correlation coefficients of at least 0.969. The combination of NIR to the chemometric techniques of SVM and PLS/MARS was proven to be appropriate to classify and quantify biodiesel from different origins.  相似文献   

7.
Assessment of liver fibrosis is of paramount importance to guide the therapeutic strategy in patients with chronic hepatitis C (CHC). In this pilot study, we investigated the potential of serum Fourier transform infrared (FTIR) spectroscopy for differentiating CHC patients with extensive hepatic fibrosis from those without fibrosis. Twenty-three serum samples from CHC patients were selected according to the degree of hepatic fibrosis as evaluated by the FibroTest: 12 from patients with no hepatic fibrosis (F0) and 11 from patients with extensive fibrosis (F3–F4). The FTIR spectra (ten per sample) were acquired in the transmission mode and data homogeneity was tested by cluster analysis to exclude outliers. After selection of the most discriminant wavelengths using an ANOVA-based algorithm, the support vector machine (SVM) method was used as a supervised classification model to classify the spectra into two classes of hepatic fibrosis, F0 and F3–F4. Given the small number of samples, a leave-one-out cross-validation algorithm was used. When SVM was applied to all spectra (n = 230), the sensitivity and specificity of the classifier were 90.1% and 100%, respectively. When SVM was applied to the subset of 219 spectra, i.e., excluding the outliers, the sensitivity and specificity of the classifier were 95.2% and 100%, respectively. This pilot study strongly suggests that the serum from CHC patients exhibits infrared spectral characteristics, allowing patients with extensive fibrosis to be differentiated from those with no hepatic fibrosis.  相似文献   

8.
Type II diabetes was diagnosed by Fourier transform mid-infrared (FTMIR) attenuated total reflection (ATR) spectroscopy in combination with support vector machine (SVM). Spectra of serum samples from 65 patients with clinical confirmed type II diabetes mellitus and 55 healthy volunteers were acquired using ATR-FTMIR and were first pretreated by three pretreatments (Savitzky–Golay smoothing, multiple scattering correction, and wavelet transforms algorithms) to reduce the interfering information before establishing the SVM models. The parameters of SVM (penalty factor C and kernel function parameter gamma) were optimized to improve the generalization abilities of the models. A grid search method (GS), genetic algorithm (GA), and particle swarm optimization (PSO) algorithm, were used to find out the optimal parameter values. The results showed that the maximum accuracies were 95.74, 97.87, and 89.36% for the optimized GS, GA, and PSO algorithms. The maximum sensitivities were 96, 100, and 92, and the maximum specificity were 95.45, 95.45, and 86.36%, respectively. The results indicated that the accuracy of type II diabetes was improved using the GS, GA, and PSO algorithms for optimizing the SVM parameters. The GA was found to be slightly better than the GS and PSO. The results of the experiment confirmed that the combination of the ATR-FTMIR spectroscopy and SVM was able to rapidly and accurately diagnose type II diabetes without reagents.  相似文献   

9.
《Analytical letters》2012,45(2):291-300
The authenticity of Chinese liquor concerns consumer health and economic issues. The traditional characterization methods are time-consuming and require experienced analysts. The use of near-infrared (NIR) spectroscopy and chemometrics to classify Chinese liquor samples was investigated using 128 liquors. The spectral region between 5340 cm?1 and 7400 cm?1 was found to be most informative. Principal component analysis was employed to characterize liquor and principal components were extracted as inputs of training classifiers. Several supervised pattern recognition methods including K-nearest neighbor, perceptron, and multiclass support vector machine were used as algorithms of constructing classifiers. The initial principal components and all spectral variables were used as the input of training models. In terms of the misclassification ratio, the support vector machine approach was the most accurate. The results indicated that near-infrared spectroscopy and chemometrics are an alternative to conventional methods for the characterization of liquor.  相似文献   

10.
Near-infrared (NIR) spectroscopy is a non-destructive measurement technique for many chemical compounds that has proved its efficiency for laboratory and industrial applications (including petroleum industry). Motor oil classification is an important task for quality control and identification of oil adulteration. Type of motor oil base stock is a key factor in product price formation. In this paper we have tried to evaluate the efficiency of different methods for motor oils classification by base stock (synthetic, semi-synthetic and mineral) and kinematic viscosity at low and high temperature. We have compared the abilities of seven (7) different classification methods: regularized discriminant analysis (RDA), soft independent modelling of class analogy (SIMCA), partial least squares classification (PLS), K-nearest neighbour (KNN), artificial neural network - multilayer perceptron (ANN-MLP), support vector machine (SVM), and probabilistic neural network (PNN) - for classification of motor oils. Three (3) sets of near-infrared spectra (1125, 1010, and 1050 items) were used for classification of motor oils into three or four classes. In all cases NIR spectroscopy was found to be effective for motor oil classification when combined with an effective multivariate data analysis (MDA) technique. SVM and PNN chemometric techniques were found to be the most effective ones for classification of motor oil based on its NIR spectrum.  相似文献   

11.
Cefazolin sodium can form both - and -form crystals. It also can form dehydrated crystalline and amorphous products through different production processes. Because different polymorphic medicines usually have different physical and chemical properties, it is critical to emphasize the crystallization control of polymorphic medicines. Near-infrared (NIR) analysis, which incorporates a combination of NIR spectroscopic techniques and multivariate chemometric methods, is considered a powerful tool for the determination of the crystallinity of polymorphic drugs. The selection of optimal spectral ranges that correlate with the lattice specificity and content specificity is crucial to obtaining a specific NIR model. In the present work, near-infrared (NIR) spectra of cefazolin sodium with different crystal forms created through different processes were studied. The results suggest that wavelengths within the range of 9102.7-8597.5 cm-1 is related to the specificity of the cefazolin sodium crystal lattice and that the range of 6001.6-5496.4 cm-1 is associated with the quantitative content of cefazolin sodium. The two ab- sorptions are caused by the second overtone of the C-H stretching band (3υC-H) and the first overtone of C-H stretching band (2υC-H), respectively. Using these results, we established a suitable method of constructing a universal quantitative model by using mixed samples in different crystal forms as a calibration set, selecting a content-specific range (6001.6-5496.4 cm-1 ), and adding lattice-related spectral ranges where appropriate. This may provide a framework for the construction of prediction models for polymorphic medicines.  相似文献   

12.
In the present study, boosting has been combined with partial least‐squares discriminant analysis (PLS‐DA) to develop a new pattern recognition method called boosting partial least‐squares discriminant analysis (BPLS‐DA). BPLS‐DA is implemented by firstly constructing a series of PLS‐DA models on the various weighted versions of the original calibration set and then combining the predictions from the constructed PLS‐DA models to obtain the integrative results by weighted majority vote. Coupled with near infrared (NIR) spectroscopy, BPLS‐DA has been applied to discriminate different kinds of tea varieties. As comparisons to BPLS‐DA, the conventional principal component analysis, linear discriminant analysis (LDA), and PLS‐DA have also been investigated. Experimental results have shown that the inter‐variety difference can be accurately and rapidly distinguished via NIR spectroscopy coupled with BPLS‐DA. Moreover, the introduction of boosting drastically enhances the performance of an individual PLS‐DA, and BPLS‐DA is a well‐performed pattern recognition technique superior to LDA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Osteonecrosis of femoral head (ONFH) is a disease characterized by an impaired blood flow in the bone. The pathogenesis is still unknown, which makes an exact diagnosis troublesome and heavily dependent on experience. Exploring the information of molecular level by modern spectroscopy may help to discover the underlying pathogenesis and find its diagnostic application in clinical medicine. The study focuses on the combination of near-infrared (NIR) spectroscopy and classification models for discriminating ONFH and normal tissues. A total of 128 surgical specimens was prepared and NIR spectra were recorded by an integrating sphere. The experiment data set was divided into three subsets, i.e., the training set, validation set, and test set. Successive projection algorithm-linear discriminant analysis (SPA-LDA) was used to compress variables and build the diagnostic model. Partial least square-discriminant analysis (PLS-DA) was used as the reference. Principal component analysis (PCA) was used for exploratory analysis. The results showed that compared to PLS-DA, SPA-LDA provided a more parsimonious model using only seven variables and achieved better performance, i.e., sensitivity of 90.5 and 85%, and specificity of 100 and 95.5% for the validation and test sets, respectively. It indicated that NIR spectroscopy combined with SPA-LDA algorithm was a feasible aid tool for discriminating ONFH from normal tissue.  相似文献   

14.
The aim of this study was to explore the possibility of applying Fourier transform infrared(FTIR) spectroscopy as a medical diagnostic tool based on a neural network classifier for detecting and classifying cholangiocarcinoma. A total of 51 cases of bile duct tissues were obtained and later characterized by FTIR spectroscopy prior to pathological diagnosis. The criteria for classification included 30 parameters for each FTIR spectra, including peak position(P), intensity(I) and full width at half-maximum(FWHM), were measured, calculated and subsequently compared against the normal and cancer groups. The FTIR spectra were classified by the radial basis function(RBF) network model. For establishing the RBF, 23 cases were used to train the RBF classifier, and 28 cases were applied to validate the model. Using the RFB model, nine parameters were observed to be pronouncedly different between cancerous and normal tissue, including I1640, I1550, I1460, I1400, I1250, I1120, I1080, I1040 and P1040. In the RBF training classification, the accuracy, sensitivity, and specificity of diagnosis were 82.6%, 80.0%, and 84.6%, respectively. While validating the classification, the accuracy, sensitivity, and specificity of diagnosis were 78.6%, 75.0%, and 81.2%, respectively. The results suggest that FTIR spectroscopy combined with neural network classifier could be applied as a medical diagnostic tool in cholangiocarcinoma diagnosis.  相似文献   

15.
Near infrared(NIR) spectroscopy technique has shown great power and gained wide acceptance for analyzing complicated samples.The present work is to distinguish different brands of tobacco products by using on-line NIR spectroscopy and pattern recognition techniques.Moreover,since each brand contains a large number of samples,an improved dendrogram was proposed to show the classification of different brands.The results suggest that NIR spectroscopy combined with principal component analysis (PCA) and hierarchical cluster analysis(HCA) performs well in discrimination of the different brands,and the improved dendrogram could provide more information about the difference of the brands.  相似文献   

16.
Near-infrared (NIR) spectroscopy, in combination with chemometrics, enable the analysis of raw materials without time-consuming sample preparation methods. The aim of our work was to estimate critical parameters in the analytical specification of oxytetracycline, and consequently the development of a method for quantification and qualification of these parameters by NIR spectroscopy. A Karl Fischer (K.F.) titration to determine the water content, a colorimetric assay method, and Fourier transform-infrared (FT-IR) spectroscopy to identify the oxytetracycline base, were used as reference methods, respectively. Multivariate calibration was performed on NIR spectral data using principal component analysis (PCA), partial least-squares (PLS 1) and principal component regression (PCR) chemometric methods. Multivariate calibration models for NIR spectroscopy have been developed. Using PCA and the Soft Independent Modelling of Class Analogy (SIMCA) approach, we established the cluster model for the determination of sample identity. PLS 1 and PCR regression methods were applied to develop the calibration models for the determination of water content and the assay of the oxytetracycline base. Comparing the PLS and PCR regression methods we found out that the PLS is better established by NIR, especially as the spectroscopic data (NIR spectra) are highly collinear and there are many wavelengths due to non-selective wavelengths. The calibration models for NIR spectroscopy are convenient alternatives to the colorimetric method and to the K.F. method, as well as to FT-IR spectroscopy, in the routine control of incoming material.  相似文献   

17.
The capability of single-reflection near-IR (NIR) spectroscopy to differentiate, characterize and monitor the fate of a set of hydrocarbons spilled in the marine environment was compared with that of multiple-reflection horizontal attenuated total reflection mid-IR (ATR-MIR) spectroscopy. Multivariate pattern recognition techniques [principal component analysis (PCA), multivariate polynomial regression, cluster analysis and potential curves] were applied to unravel the major trends of the weathering processes of four generic types of crude oils and two heavy fuel oils spilled under controlled conditions for almost 4 months. A chemical interpretation of the NIR spectra related the weathering processes and the PCA loadings, which had not already been done in the literature. Weathering for both light and heavy products was characterized by a contrast among the linear aliphatic structures (more volatile and easy to degrade) and the branched and aromatic structures (more recalcitrant). Potential curves were applied to model each product and determine objectively whether unknown samples could be classified correctly. Polynomial regression on the PCA scores was employed to evaluate the time elapsed from the oil spillage to its sampling; this represents a new approach to assess the age of a hydrocarbon lump. In general, NIR spectroscopy yielded good results when light crude oils were studied, whereas ATR-MIR spectroscopy led to satisfactory results for both light and heavy products.  相似文献   

18.
The hydrotalcite minerals stitchtite, iowaite and desautelsite together with the arsenate exchanged takovite and arsenate exchanged hydrotalcite have been studied using near-IR reflectance spectroscopy. Each mineral has its own characteristic NIR spectrum enabling recognition of the particular hydrotalcite. As such the technique has application in the field for the analysis and identification of hydrotalcites. Hydrotalcites have proven useful as an anion exchange material. Takovite and hydrotalcite were used to exchange carbonate anions by arsenate. Three Near-IR spectral regions are identified: (a) the high wavenumber region between 6400 and 7400 cm(-1) attributed to the first overtone of the fundamental hydroxyl stretching mode, (b) the 4800-5400 cm(-1) region attributed to water combination modes of the hydroxyl fundamentals of water, and (c) the 4000-4800 cm(-1) region attributed to the combination of the stretching and deformation modes of the MOH units of the hydrotalcites. NIR spectroscopy enables the separation of the hydroxyl bands of the water and M-OH units for the hydrotalcites. Compared with the NIR spectroscopy of the structural units of the hydrotalcites namely gibbsite and brucite, the bands are broad.  相似文献   

19.
Hui Chen  Zan Lin 《Analytical letters》2018,51(15):2362-2374
Black rice is one of the famous rare rice varieties in China. It is common to sell inferior black rice intentionally declared as famous brands due to economical motivation. There is an urgent need to develop an analytical method for untargeted identification of black rice. The present work focuses on exploring the feasibility of the untargeted identification of black rice by the combination of near-infrared (NIR) spectroscopy and data driven-based class modeling and variable selection. A total of 142 samples of three brands were collected and used for measurements. The samples of a specific class were used as the target class. Principal component analysis was applied for the preliminary analysis. The model-independent variable selection method, i.e., joint mutual information, was used for spectral compression. Only the 10 most informative variables were picked from original variables based on which an optimal class-model for the target class was constructed and validated by means of an external test set. As a result, the model achieved 100% of sensitivity and specificity. It can be concluded that NIR spectroscopy combined with one-class modeling is a feasible tool for the untargeted identification of black rice.  相似文献   

20.
Feature selection is frequently used as a preprocessing step to machine learning. The removal of irrelevant and redundant information often improves the performance of learning algorithms. This paper is a comparative study of feature selection in drug discovery. The focus is on aggressive dimensionality reduction. Five methods were evaluated, including information gain, mutual information, a chi2-test, odds ratio, and GSS coefficient. Two well-known classification algorithms, Na?ve Bayesian and Support Vector Machine (SVM), were used to classify the chemical compounds. The results showed that Na?ve Bayesian benefited significantly from the feature selection, while SVM performed better when all features were used. In this experiment, information gain and chi2-test were most effective feature selection methods. Using information gain with a Na?ve Bayesian classifier, removal of up to 96% of the features yielded an improved classification accuracy measured by sensitivity. When information gain was used to select the features, SVM was much less sensitive to the reduction of feature space. The feature set size was reduced by 99%, while losing only a few percent in terms of sensitivity (from 58.7% to 52.5%) and specificity (from 98.4% to 97.2%). In contrast to information gain and chi2-test, mutual information had relatively poor performance due to its bias toward favoring rare features and its sensitivity to probability estimation errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号