首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Analytical letters》2012,45(14):2214-2231
Abstract

A new simple and sensitive method has been proposed for rapid determination of trace levels of silver in environmental water samples, using dispersive liquid–liquid microextraction (DLLME) prior to its microsample introduction-flame atomic absorption spectrometry. Under the optimum conditions, the linear range was 0.1–7 µg L?1 and limit of detection was 0.018 µg L?1. The relative standard deviation for 0.50 and 5.00 µg L?1 of silver in water sample was 4.0 and 1.7%, respectively. The relative recoveries of silver from tap, well, river, and seawater samples at spiking levels of 1.00 and 5.00 µg L?1 were in the range of 86.4–98.6%.  相似文献   

2.
An electrochemical immunoassay for microcystin-LR (MC-LR) detection was developed using multi-labeled horseradish peroxidase-mimicking DNAzyme on carbon nanotubes (CNTs) as electrocatalyst for signal amplification. CNTs were covalently conjugated to multiple DNAzyme along with MC-LR for a competitive immunoassay. The as-prepared DNAzyme/CNTs/MC-LR biolabel was specifically captured on the electrode surface, and current responses were obtained upon the electro-catalytic reduction of hydrogen peroxide by the captured biolabels. Under optimal conditions, the electro-catalytic current decreased linearly with the increase amount of MC-LR in the range from 0.01 to 7.0 µg L?1. The linear regression equation was I (µA) = 12.96 ? 1.48 X [MC–LR] (µg L?1), with a correlation coefficient of 0.989. The limit of detection of MC-LR was 2.31 ng L?1. Application of the immunoassay method and LC/MS/MS method for MC-LR determination on spiked reservoir water gave recovery range of 91.7–105.2% and 94.0–105.0%, respectively. The resulting versatile immunoassay exhibited high sensitivity, good precision and satisfactory reproducibility, which could have vast potential in routine water quality monitoring for various environmental toxins.  相似文献   

3.
《Analytical letters》2012,45(17):2747-2757
Abstract

Brazilian sugarcane spirits were analyzed to elucidate similarities and dissimilarities by principal component analysis. Nine aldehydes, six alcohols, and six metal cations were identified and quantified. Isobutanol (LD 202.9 µg L?1), butiraldehyde (0.08–0.5 µg L?1), ethanol (39–47% v/v), and copper (371–6068 µg L?1) showed marked similarities, but the concentration levels of n-butanol (1.6–7.3 µg L?1), sec-butanol (LD 89 µg L?1), formaldehyde (0.1–0.74 µg L?1), valeraldehyde (0.04–0.31 µg L?1), iron (8.6–139.1 µg L?1), and magnesium (LD 1149 µg L?1) exhibited differences from samples.  相似文献   

4.
We present a method for the separation and determination of transition metals in electrolytes based on ion chromatography (IC) with post-column reaction (PCR) and serial conductivity and spectrophotometric detection. Three IC columns [Metrosep C4—250/4.0 (column A), Metrosep C6—250/4.0 (column B), and Nucleosil 100-5SA—250/4.6 (column C)] with different capacities, and stationary phases were used and compared with each other for method development. All spectrophotometric measurements were carried out with 4-(2-pyridylazo)resorcinol (PAR) as PCR reagent at a wavelength of 500 nm. To characterize the precision of the separation, the selectivity for the analysis of transition metals (nickel, cobalt, copper, and manganese) in the presence of large amounts of lithium and the resolution of the peaks were determined and compared with one another. Furthermore, the limits of detection (LOD) and quantification (LOQ) were determined for the transition metals. The LODs and LOQs determined by column C were as follows: cobalt (LOD/LOQ): 9.4 µg L?1/31.3 µg L?1, manganese (LOD/LOQ): 7.0 µg L?1/23.5 µg L?1, and nickel (LOD/LOQ): 6.3 µg L?1/21.1 µg L?1. Finally, the concentration of transition metal dissolution of the cathode material Li1Ni1/3Co1/3Mn1/3O2 (NCM) was investigated for different charge cut-off voltages by the developed IC method.  相似文献   

5.
《Analytical letters》2012,45(5):761-777
This article reviews the use of square wave anodic stripping voltammetry for the simultaneous determination of ecotoxic metals (Pb, Cd, Cu, and Zn) on a bismuth-film (BiFE) electrode. The BiFE was prepared in situ on a glassy-carbon electrode (GCE) from the 0.1 mol L?1 acetate buffer solution (pH 4.5) containing 200 µg L?1 of bismuth (III). The addition of hydrogen peroxide to the electroanalytical cell proved beneficial for the interference-free determination of Cu (II) together with zinc, lead, and cadmium, using the BiFE. The experimental variables were investigated and optimized with the view to apply this type of voltammetric sensor to real samples containing traces of these metals. The performance characteristics, such as reproducibility, decision limit (CCa), detection capability (CCβ), sensitivity, and accuracy indicated that the method holds promise for trace Cu2+, Pb2+, Cd2+, and Zn2+ levels by employment of Hg-free GCE with SWASV. CCa, and CCβ were calculated according to the Commission Decision of 12 August 2002 (2002/657/EC). Linearity was observed in the range 20–280 µg L?1 for zinc, 10–100 µg L?1 for lead, 10–80 µg L?1 for copper, and 5–50 µg L?1 for cadmium. Using the optimized conditions, the stripping performance of the BiFE was characterized by low limits of detection (LOD). Finally, the method was successfully applied in real as well as in certified reference water samples.  相似文献   

6.
The possibility of using ionic liquid based chitosan sorbent for the separation and preconcentration of fluoroquinolone antibiotics (marbofloxacin, enoxacin, ofloxacin, ciprofloxacin, and enrofloxacin) has been studied. For this reason, different ionic liquids were prepared and coated on the chitosan sorbent. The conditions of the preconcentration of fluoroquinolones on a microcolumn have been optimized and the extraction efficiencies of the prepared sorbents have been compared. The compounds were eluted with 5 mL of 20% NH3 (v/v, MeOH) solution and determined by HPLC with diode array and fluorescence detector. The limits of detection were found as 4.23 µ g L?1 for marbofloxacin, and 1.09 µg L?1 for enoxacin; 3.23 × 10?3 µg L?1 for ofloxacin; 8.39 × 10?3 µg L?1 for ciprofloxacin; and 19.50 × 10?3 µg L?1 for enrofloxacin. The developed method was applied for the analysis of fluoroquinolone in milk, egg, fish, bovine, and chicken samples and the recoveries were obtained in the range 70–100%.  相似文献   

7.
In this paper, a novel molecularly imprinted polymer coated stir bar has been used to selectively extract naphthalene sulfonates (NSs) directly from seawater sample. 1-Naphthalene sulfonic acid (1-NS) was used as template molecule. The effects of different parameters were optimized on the extraction efficiency and the optimum conditions were established as: the absorption and desorption times were fixed, respectively, at 10 and 15 min, stirring speed was 700 rpm, pH was adjusted to 4.1, amount of NaCl was 1 mol L?1 and extraction process was performed at a temperature of 50 °C. The linear ranges were 2–250 µg L?1 for 3,6-NDS-1-OH (1-naphthol-3,6-disulfonic acid), 4–250 µg L?1 for 2-NS (2-naphthalene sulfonate) and 3–250 µg L?1 for 1-NS. The detection limits were within the range of 0.32–0.95 µg L?1. Under optimum conditions, the detection limits of the NSs were 0.84, 0.95 and 0.32 µg L?1 with the enrichment factor of 117-, 41- and 77-fold for 2-NS, 1-NS, and 6-NDS-1-OH, respectively. The repeatability of the method was satisfactory (0.53 ≤ RSD ≤6.0 %, n = 10). The method has been successfully applied for the analysis of trace amounts of three naphthalene sulfonates in seawater of Chabahar Bay.  相似文献   

8.
《Analytical letters》2012,45(3):579-587
Abstract

This paper reports on the synthesis of a new chromogenic reagent, 2‐carboxyl‐1‐naphthalthiorhodanine (CNTR). A high sensitive, selective, and rapid method for the determination of gold based on the rapid reaction of gold with CNTR and the solid phase extraction of the colored chelate with a reversed phase polymer‐based C18 cartridge was developed. In the presence of 0.05–0.5 mol L?1 of phosphoric acid solution and emulsifier‐OP medium, CNTR reacts with gold to form a red chelate of a molar ratio 1∶3 (gold to CNTR). This chelate was enriched by the solid phase extraction with a polymer‐based C18 cartridge and the retained chelate was eluted from the cartridge with dimethyl formamide (DMF). The enrichment factor of 100 was achieved. In the DMF medium, the molar absorptivity of the chelate is 1.35×105 L · mol?1 · cm?1 at 540 nm. Beer's law is obeyed in the range of 0.01~2 µg mL?1 in the measured solution. The relative standard deviation for 11 replicates sample of 0.5 µg L?1 level is 2.05%. The detection limit, based on three times the standard deviation is 0.02 µg L?1 in the original sample. This method was applied to the determination of gold in water and ore with good results.  相似文献   

9.
《Analytical letters》2012,45(11):1921-1930
This paper describes a simple and sensitive method for the determination of manganese in human urine by graphite furnace atomic absorption spectroscopy (GFAAS), which includes sample preparation by microwave digestion. Matrix modifier combinations, the digestion power, pyrolysis, and atomization temperatures were optimized. A mixture of 5.0 µg Pd(NO3)2 and 3.2 µg Mg(NO3)2 modifier presented the best performance. The optimal temperatures for pyrolysis and atomization were 1500°C and 1950°C, respectively. The GFAAS method was compared to inductively coupled plasma–mass spectrometry (ICP–MS) for the determination of manganese in urine. Analytical figures of merit for GFAAS and ICP–MS were: accuracy (3.46%, 2.19%), precision (3.61%, 5.84%), LOD (0.109 µg · L?1, 0.015 µg · L?1), LOQ (0.327 µg · L?1, 0.045 µg · L?1), and recovery (80–100%, 74–89%). Both methods were employed for the determination of Mn in urine and the results were compared statistically.  相似文献   

10.
An SPE-HPTLC method for simultaneous identification and quantification of seven pharmaceuticals in production wastewater was optimized and validated. The studied compounds were enrofloxacine, oxytetracycline, trimethoprim, sulfamethazine, sulfadiazine, sulfaguanidine and penicillin G/procaine. The method involves solid-phase extraction on hydrophilic-lipophilic balance cartridges with methanol and HPTLC analysis of extracts on CN modified chromatographic plates followed by videodensitometry at 254 and 366 nm. Optimization of chromatographic separation was performed by systematic variation of the mobile phase composition using genetic algorithm approach and the optimum mobile phase composition for TLC separation was 0.05 M H2C2O4:methanol = 0.81:0.19 (v/v). Linearity of the method was demonstrated in the ranges from 1.5 to 15.0 μg L−1 for enrofloxacine, 100–500 μg L−1 for oxytetracycline, 150–600 μg L−1 for trimethoprim, 300–1100 μg L−1 for sulfaguanidine and 100–400 μg L−1 for sulfamethazine, sulfadiazine and penicillin G/procaine with coefficients of determination higher than 0.991. Mean recoveries ranged from 74.6 to 117.1% and 55.1 to 108.0% for wellspring water and production wastewater, respectively. Only sulfaguanidine showed lower results. The described method has been applied to the determination of pharmaceuticals in wastewater samples from pharmaceutical industry.  相似文献   

11.
《Analytical letters》2012,45(14):1995-2005
Using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) ionic liquid as extraction solvent, five estrogens including estrone (E1), 17β-estradiol (E2), estriol (E3), 17α -ethynylestradiol (EE2), and diethylstilbestrol (DES) in water samples were determined by dispersive liquid-liquid microextraction (DLLME) followed by high performance liquid chromatography with a photodiode array detector and a fluorescence detector (HPLC-DAD-FLD). The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of [C6MIM][PF6] dispersed entirely into the sample solution with the help of a disperser solvent (acetone). Parameters including both extraction and disperser solvents and their volumes, extraction and centrifugal time, sample pH, and salt effect were investigated and optimized. Under the optimized conditions, 110–349 fold enrichment factors of analytes were obtained. The calibration curves were linear in the concentration range of 0.2–100 µg L?1 for E2, E3, and EE2 detected with FLD, and 1–100 µg L?1 for E1 and DES detected with DAD. The correlation coefficient of the calibration curve was between 0.9990 and 0.9997. The limits of detection (LOD, S/N = 3) for the five estrogens were in the range of 0.08–0.5 µg L?1. The relative standard deviations (RSD) for six replication experiments at the concentration of 5.0 µg L?1 were ≤5.7%. The proposed method was applied to the analysis of three water samples from different sources (river water, waste water, and sea water). The relative recoveries of spiked water samples are satisfied with 89.3–102.4% and 88.7–105.2% at two different concentration levels of 5.0 and 50.0 µg L?1, respectively.  相似文献   

12.
The evaluation of the voltammetric behaviour and the determination of herbicide molinate were performed for the first time over the surface of solid amalgam electrode fabricated with silver nanoparticles using cyclic voltammetry and square-wave voltammetry techniques. The experimental and instrumental parameters were evaluated to reach the maximum analytical response for molinate. It was achieved when a medium composed of 0.04 mol L?1 Britton–Robinson buffer at the pH value of 4.0 was used. Under these conditions, molinate showed one pronounced reduction peak at Ep = ?0.37 V (vs. Ag/AgCl 3 mol L?1) that was characterised as an irreversible system. An analytical curve was constructed at the concentration range from 9.36 to 243.49 µg L?1 and a limit of detection of 2.34 µg L?1 was obtained. The amalgam electrode presented good stability during the measurements with relative standard deviation (RSD) values of 2.9% for the repeatability and 5.4% for the reproducibility. The voltammetric method developed here could be conveniently applied for the determination of molinate in river water and rice spiked samples at levels below those established on the legislations of European Union and Brazil with good accuracy (RSD of less than 5% for all samples). Comparison with HPLC technique was carried out and the results indicated satisfactory concordance. According to the results depicted here, the silver nanoparticles solid amalgam electrode showed itself highly sensitive and an interesting alternative for the routine analysis of molinate in water and food samples. Furthermore, it introduces an environmentally acceptable alternative to the mercury electrodes, most commonly used for determination of reducible pesticides.  相似文献   

13.
In this research, magnetic Fe3O4 nanoparticles were synthesised by co-precipitation method and modified with polythiophene (PT) to produce Fe3O4-PT nanoparticles for preconcentration and determination of cadmium (??) ion followed by electrothermal atomic absorption spectrometry. The results of FT-IR spectroscopy, EDX analysis and SEM images show that Fe3O4-PT nanoparticles were synthesised successfully. Different parameters such as sample pH, amounts of adsorbent, sample volume, extraction time, type and concentration of eluent and desorption time were completely investigated and optimum conditions were selected.

Under the optimum conditions, the calibration curve was linear in the range of 0.01–0.25 µg L?1 of cadmium (??). The relative standard deviation was 4.7% (n = 7, 0.10 µg L?1 Cd2+) and limit of detection was 3.30 ng L?1. The accuracy of the proposed method was verified by the analysis of a certified reference material and spike method. Finally, the proposed method was applied for the determination of ultra-trace levels of cadmium (??) in different water and food samples.  相似文献   

14.
A procedure for determination of Cd, Pb, Cu and Ni in high-salinity waters by inductively coupled plasma optical emission spectrometry has been developed. It is based on cloud-point extraction of these metals as complexes of diethyldithiocarbamate (NaDDTC) in micellar media of non ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114). Multivariate optimisation techniques have been applied to optimise the experimental variables. A full two-level factorial design was used to evaluate the influence of variables and Doehlert design was performed to find the optimum values. The effect of interference from residual salinity in surfactant-rich phase was also investigated. The developed procedure allows to achieve enhancement factors of 20.0, 20.4, 19.5 and 20.6, along with limits of detection (3σ B) of 0.030, 2.1, 0.62 and 0.27 µg L?1, and precision expressed as relative standard deviation (%RSD, n = 10) of 3.7 (40.0 µg L?1), 5.7 (20.0 µg L?1), 6.6 (20.0 µg L?1) and 3.1% (10.0 µg L?1) for Cd, Pb, Cu and Ni, respectively. The accuracy was evaluated by spike tests on the seawater (salinity of 35‰) and petroleum produced formation waters (salinity between 15‰ and 75‰). It was obtained by recoveries between 79% and 105%.  相似文献   

15.
Speciation of mercury was accomplished by using a simple interface with photo-induced chemical vapour generation in a high performance liquid chromatography—atomic fluorescence spectrometry (HPLC-AFS) hyphenated system. Acetic acid and 2-mercaptoethanol in the mobile phase were used as photochemical reagent. The operating parameters were optimized to give limits of detection of 0.53 µg L?1, 0.22 µg L?1, 0.18 µg L?1 and 0.25 µg L?1 for inorganic mercury, methylmercury, ethylmercury and phenylmercury, respectively. The method was validated with the certified reference material DORM-2 and applied to the analysis of seafood samples. The HPLC-AFS hyphenated system is simple, environmentally friendly, and represents an attractive alternative to the conventional peroxothiosulfate-borohydride method.  相似文献   

16.
A simple and sensitive method is presented for solid phase extraction (SPE) and preconcentration of trace quantities of beryllium using octadecyl silica gel modifed with aurin tricarboxylic acid (aluminon). Beryllium is then determined by flame atomic absorption spectroscopy. Parameters affecting SPE such as pH, sample solution and eluent flow rate, type, concentration and volume of eluent, interfering ions and breakthrough volume, were investigated. Under optimal conditions, the beryllium ions were retained on the sorbent at pH 6–6.7, while 3.0 mL of 0.05 mol L?1 HNO3 is sufficient to elute the ions. The limit of detection (LOD) based on 3σ was 0.8 µg L?1 for 250 mL sample solution and 5 mL 0.05 mol L?1 HNO3 as eluent. The LOD can reach 0.1 µg L?1 for 1 L sample solution and 3 mL of 0.05 mol L?1 HNO3. The accuracy and precision (RSD %) of the method is >90% and <10%, respectively. The method was applied to the determination of beryllium in aqueous samples.  相似文献   

17.
In this work, magnetic solid-phase extraction based on sodium dodecyl sulfate-coated Fe3O4 nanoparticles has been successfully applied for extraction and preconcentration of trace amounts of nystatin from water and vaccine samples prior to high-performance liquid chromatography–ultraviolet detection. Various experimental parameters affecting extraction and recovery of the analyte, such as the amount of sodium dodecyl sulfate, pH of the sample solution, salt concentration, extraction time, sample volume and desorption conditions, were systematically studied and optimized. Under optimized conditions, nystatin was quantitatively extracted. Proper linear range with good coefficient of determination, (R 2 > 0.99) and limit of detection and quantification (based on signal-to-noise ratios of 3 and 10) of 2.0 and 5.0 µg L?1, over the investigated concentration range (5–700 µg L?1), were obtained, respectively. The intra-day and inter-day relative standard deviations at 50 µg L?1 level of NYS were 1.4 and 4.5% based on six replicate determinations. The accuracy of the method was evaluated by recovery measurements on spiked samples. Suitable recoveries of 96–102 and 26–44% were achieved (at spiked levels of 50, 300 and 500 µg L?1) for water and vaccine samples, respectively.  相似文献   

18.
A novel and efficient sulfadiazine imprinted polymer was synthesized via co-precipitation method and successfully grafted on magnetic multi-walled carbon nanotubes. The synthesized magnetic imprinted polymer was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction analysis, thermal analysis and applied as a sorbent for selective magnetic solid-phase extraction of sulfadiazine. The retained sulfadiazine was eluted by 150.0 µL methanol/acetic acid (6:4) solution and quantified by fiber optic linear array spectrophotometry via formation of a detectable azo dye. All parameters affecting the extraction of sulfadiazine were investigated and optimized. Under the optimized conditions, the method exhibited a linear dynamic range of 2.0–50.0 µg L?1 with a detection limit of 0.56 µg L?1 and enrichment factor of 300.0. The relative standard deviation at 30.0 µg L?1 of sulfadiazine (N = 6) was 2.8 and 4.6% for intra-day and inter-day, respectively. The method was successfully applied to determine sulfadiazine in human urine, honey, milk and environmental water samples.  相似文献   

19.
《Analytical letters》2012,45(12):1887-1897
Abstract

The application of bismuth film electrodes to the determination of cobalt by constant current adsorptive stripping potentiometry with exploitation of a catalytic effect is presented. The addition of NaNO2 to the solution containing ammonia buffer and dimethylglyoxime results in a 25‐fold enhancement of the adsorptive stripping potentiometric cobalt signal. Several key parameters of the potentiometric stripping mode were optimized, including the composition of the supporting electrolyte, the stripping current, the accumulation potential, and the accumulation time. The optimized procedure yields favorable and highly stable stripping responses with good precision (RSD=1.4% for a Co concentration of 2 µg L?1), low detection limit (0.07 µg L?1), and good linearity (up to 10 µg L?1, R2=0.998) with a deposition time of 60 s and a stripping current of 10 µA. The method enables the determination of Co in the presence of high excesses of Ni or Zn.  相似文献   

20.
The development of a solid-phase extraction (SPE) procedure for the pre-concentration of trace amounts of Pb2+ ion on 2-furan-2-yl-1-furan-2-ylmethyl-1H-benzoimidazole loaded on activated carbon modified with silver nanoparticles (L-AC-Ag-NP) was presented. The metal ion retained on the sorbent was quantitatively determined via complexation with the ligand. The complexed metal ion was efficiently eluted using 10 mL of 4 mol L?1 sulphuric acid in 10 w/v% acetone. The influences of the analytical parameters, including pH, amounts of the ligand and the solid phase, eluent conditions and sample volume, on the recoveries of the metal ion were optimised. Using the optimised parameters, the linear response of the SPE method for Pb2+ ion were in the ranges of 0.2–160 µg L?1, and the detection limit for Pb2+ ion was 0.034 µg L?1. The proposed method exhibits a pre-concentration factor (PF) of 80 and an enhancement factor of 30 for Pb2+ ion. The presented results demonstrate the successful application of the proposed method for the determination of Pb2+ ion in some real samples with high recoveries (>93%) and reasonable relative standard deviation (RSD < 2%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号