首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The self-diffusion coefficients of each of the components in mixtures containing pyridine and each of the homologous series 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imides in acetonitrile were determined using NMR diffusometry (i. e., Pulsed Gradient Spin Echo). The nature of solvation was found to change significantly with the proportion of salt in the mixtures. Increased diffusion coefficients (when corrected for viscosity) for the molecular components were observed with increasing proportion of ionic liquid and with increasing alkyl chain length on the cation. Comparison of the molecular solvents suggests increased interactions in solution of the pyridine with other components of the mixture, consistent with the proposed interactions shown previously to drive changes in reaction kinetics. Discontinuities were seen in the diffusion data for each species in solution across different ionic liquids between the hexyl and octyl derivatives, suggesting a change in the structuring in solution as the alkyl chain on the cation changes and demonstrating the importance of such when considering homologous series.  相似文献   

2.
This brief review presents the recent development in the synthesis of cyclic carbonate from carbon dioxide (CO2) using ionic liquids as catalyst and/or reaction medium. The synthesis of cyclic carbonate includes three aspects: catalytic reaction of CO2 and epoxide, electrochemical reaction of CO2 and epoxide, and oxidative carboxylation of olefin. Some ionic liquids are suitable catalysts and/or solvents to the CO2 fixation to produce cyclic carbonate. The activity of ionic liquid is greatly enhanced by the addition of Lewis acidic compounds of metal halides or metal complexes that have no or low activity by themselves. Using ionic liquids for the electrochemical synthesis of the cyclic carbonate can avoid harmful organic solvents, supporting electrolytes and catalysts, which are necessary for conventional electrochemical reaction systems. Although the ionic liquid is better for the oxidative carboxylation of olefin than the ordinary catalysts reported previously, this reaction system is at a preliminary stage. Using the ionic liquids, the synthesis process will become greener and simpler because of easy product separation and catalyst recycling and unnecessary use of volatile and harmful organic solvents.  相似文献   

3.
《合成通讯》2013,43(23):4143-4149
Abstract

The room temperature ionic liquid (RTIL) 1-n-butyl-3-methylimidazolium hexafluorophosphate (BMImPF6) is used as a “green” recyclable alternative to conventional solvents for the silylation of a series of hydroxyl compounds (alcohols and phenols) with t-butyldimethylchlorosilane (TBDMCS), which has some advantages such as simplicity of the synthetic procedure, the potential for recycling of the ionic liquid and the environmentally benign.  相似文献   

4.
《合成通讯》2013,43(21):3777-3780
Abstract

The room temperature ionic liquid [bmim][PF6], namely 1-butyl-3-methyl-imidazolium hexafluorophosphate, is used as an alternative solvent to classic solvents for the synthesis of a series of N-aryl phthalimides in good to excellent yields.  相似文献   

5.
Gas-to-ionic liquid partition coefficient data have been assembled from the published chemical literature for solutes dissolved in 1-allyl-3-methylimidazolium dicyanamide, 1-allyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide, octyltriethylammonium bis(trifluomethyl-sulphonyl)imide, tributylethylphosphonium diethylphosphate and 1-butyl-1-methylmorpholinium tricyanomethanide. The published experimental data were converted to water-to-ionic liquid partition coefficients using standard thermodynamic relationships. Both sets of partition coefficients were correlated with the Abraham solvation parameter model. The derived Abraham model correlations described the observed partition coefficient data to within 0.13 log units. Cation-specific equation coefficients were calculated for each of the cations present in the five ionic liquid solvents studied. The calculated cation-specific equation coefficients can be combined with previously reported ion-specific equation coefficients for 19 different anions to yield Abraham model correlations for predicting the partitioning the behaviour of solutes in 76 different anhydrous ionic liquid solvents.  相似文献   

6.
7.
8.
Ionic liquids are organic salts that are liquid at ambient temperatures, preferably at room temperature. They are nonvolatile, thermally and chemically stable, highly polar liquids that dissolve many organic, inorganic, and metallo‐organic compounds. Many combinations of organic cations with different counterions are already known, and the properties of ionic liquids may be adjusted by the proper selection of the cation and counterion. In the last decade, there has been increasing interest in using ionic liquids as solvents for chemical reactions. The interest is stimulated not only by their nonvolatility (green solvents) but also by their special properties, which often affect the course of a reaction. In recent years, ionic liquids have also attracted the attention of polymer chemists. Although the research on using ionic liquids in polymer systems is still in its infancy, several interesting possibilities have already emerged. Ionic liquids are used as solvents for polymerization processes, and in several systems they indeed show some advantages. In radical polymerization, the kp/kt ratio (where kp is the rate constant of propagation and kt is the rate constant of termination) is higher than in organic media, and thus better control of the process can be achieved. Ionic liquids, as electrolytes, have also attracted the attention of researchers in the fields of electrochemical polymerization and the synthesis of conducting polymers. Finally, the blending of ionic liquids with polymers may lead to the development of new materials (ionic liquids may act as plasticizers, electrolytes dispersed in polymer matrices, or even porogens). In this article, the new developments in these fields are briefly discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4675–4683, 2005  相似文献   

9.
Osmotic coefficients for aqueous mixtures of sodium chloride with sodiumpara-ethylbenzenesulfonate NapEBS and lithiumpara-ethylbenzenesulfonate LipEBS with NapEBS obtained by the gravimetric isopiestic vapor pressure comparison method are interpreted with the Scatchard neutral-component and with the Pitzer ion-component equations. Ionic and mean ionic activity coefficients for Na+ and Cl ions and for NaCl, respectively, were also determined with an electrochemical cell. The ±(NaCl) values at constant unit ionic strength,I=1.00, were compared with those computed from osmotic-coefficient measurements. Strong anion-anion interactions were observed in the NaCl-NapEBS mixtures.  相似文献   

10.
Recent studies on electrochemical partial fluorination in ionic liquid fluoride salts are reviewed. At first, historical background and some problems of electrochemical fluorination in organic solvents are briefly mentioned. Solvent-free electrochemical fluorinations in ionic liquids are explained as follows. Ultrasonication was found to improve both the yield and current efficiency for electrochemical fluorination of α-phenylthioacetate, which is mainly attributable to marked mass transport promotion of the substrate and the suppression of anode passivation. Highly regioselective and efficient fluorination of cyclic ethers, lactones, and cyclic carbonate was achieved in Et4NF·4HF and Et3N·5HF. Selective fluorination of hardly oxidizable phthalide was realized using a combination of imidazolium and fluoride ionic liquids. The unique effect of imidazolium ionic liquids on electrochemical fluorodesulfurization of 3-phenylthiophthalide was explained. Reuse of ionic liquids for electrochemical fluorination is also possible.  相似文献   

11.
Abstract

The mechanisms are discussed which control the GPC elution of ionic solutes, both the polyelectrolytes and the low molecular salts. The processes involved are quite general and valid in organic and in aqueous solvents. The conclusion is that gel permeation chromatography is a powerfull method to characterize poly-electrolytes; and it is shown that the correct data on molecular weight distribution can be obtained when the ionic content in the eluent is larger than 5.10?2 M and when the concentration injected is lower than the critical overlapping concentration. The interpretation of chromatograms can be performed using the universal calibration and a viscosimetric detector.  相似文献   

12.
The structures and isomerization of silylenoid H2SiLiF are investigated by density functional theory (DFT) at B3LYP/6-311+G(d,p) level. The solvent effects are modeled using the self-consistent reaction field (SCRF) method with Tomasi’s polarized continuum model (PCM). Five representative solvents, i.e. benzene, ether, THF, acetone, and DMSO, are chosen for this work. Special attention is paid to THF solvent. The results indicate that the polarity of solvents has played an important role on the structures and relative stabilities of different isomers. Contrary to the three-membered ring structure 1, the relative stability of the “classical” tetrahedron structure 4 increases with increasing dielectric constants (ε) of solvents. The σ-complex isomer 3 is most unstable structure. Although the relative energies are reduced with increasing dielectric constants (ε) of solvents, the p-complex structure 2 still has the lowest energy. The effects of solvents on the dipole moments and charge distributions are also discussed.  相似文献   

13.
Abstract

3,3-Bis(N-carbazolylmethyl)oxetane, a cyclic compound with carbazolyl substituents closely linked to the oxetane ring, was polymerized by electrochemical initiation in aprotic polar solvents using a quaternary ammonium salt as electrolyte. Colored polymers were obtained as thin films deposited on the anode and were characterized by IR, 1H NMR, and thermogravimetry. The data obtained refute the classical cationic polymerization of oxetanes.  相似文献   

14.

This paper reports on the preparation and electrochemical performance of chitin- and chitin-cellulose-based hydrogel electrolytes. The materials were prepared by a casting solution technique using ionic liquid-based solvents. The method of chitin dissolution in ionic liquid with the assistance of dimethyl sulfoxide co-solvent was investigated. The obtained membranes were soaked with 1-M lithium sulfate aqueous solution. The prepared materials were preliminarily characterized in terms of structural and physicochemical properties. Further, the most promising biopolymer membranes were assembled with activated carbon cloth electrodes in symmetric electrochemical capacitor cells. The electrochemical performances of these devices were studied in a 2-electrode system by commonly known electrochemical techniques, such as cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The devices operated at a maximum voltage of 0.8 V. All the investigated materials have shown high efficiency in terms of specific capacitance, power density, and cyclability. The studied capacitors exhibited specific capacitance values in the range of 92–98 F g−1, with excellent capacitance retention (ca. 97–98%) after 20,000 galvanostatic charge and discharge cycles. Taking into account the above information and the eco-friendly nature of the biopolymer, it appears that the prepared chitin- and chitin-cellulose-based hydrogel electrolytes can be promising components for green electrochemical capacitors.

  相似文献   

15.
Published thermodynamic data measured in aqueous mixtures of sodium or potassium dihydrogen phosphate with hydrogen phosphate and chloride at 25°C were used to test recently developed methods for calculation of the pH of phosphate buffer solutions. Equations for ionic activity coefficients are used in these methods. It is shown that all data used in the tests up to an ionic strength of about 0.5 mol-kg-1 can be accurately predicted by the two methods recommended. In one of these methods, equations of the Hückel type are used for ionic activity coefficients and in the other equations of the Pitzer type. Several sets of phosphate buffer solutions are recommended,e.g., for calibrations of glass electrode cells. In the recommended sets, the pH of the buffer solutions can be calculated either by the Hückel or Pitzer method, and the pH predictions of these methods agree in most cases within 0.005 at least up to ionic strengths of about 0.2 mol-kg-1. The pH values of the two primary pH standards endorsed by IUPAC based on aqueous mixtures of KH2PO4 and Na2HPO4,i.e., pH values of 6.865 and 7.413, can also be accurately predicted by the equations recommended in this study.  相似文献   

16.
Microdisk, single potential‐step chronoamperometry, is applied to a range of organic substrates in the aprotic solvents tetrahydrofuran, propylene carbonate, acetonitrile and the room temperature ionic liquid [C4dmim][N(Tf)2]. Fitting of the chronoamperometric transients was achieved using the Shoup and Szabo method [3]. Accurate values for the diffusion coefficients, D, and the number of electron(s) transferred, n, in the electrode process have been simultaneously and consistently obtained. This method is shown to be generally applicable and reliable for the determination of the number of electrons transferred in faradaic processes uncomplicated by relatively slow coupled homogeneous kinetics. Since the experiment is conducted essentially on typical voltammetric timescales it can be commended as a complementary technique for classical coulometry which is only possible on much longer timescales. The chronoamperometric method is therefore likely to be of greater relevance to the interpretation of voltammetric data.  相似文献   

17.
Considering the ionic nature of ionic liquids (ILs), ionic association is expected to be essential in solutions of ILs and to have an important influence on their applications. Although numerous studies have been reported for the ionic association behavior of ILs in solution, quantitative results are quite scarce. Herein, the conductivities of the ILs [Cnmim]Br (n=4, 6, 8, 10, 12), [C4mim][BF4], and [C4mim][PF6] in various molecular solvents (water, methanol, 1‐propanol, 1‐pentanol, acetonitrile, and acetone) are determined at 298.15 K as a function of IL concentration. The conductance data are analyzed by the Lee–Wheaton conductivity equation in terms of the ionic association constant (KA) and the limiting molar conductance (Λm0). Combined with the values for the Br? anion reported in the literature, the limiting molar conductivities and the transference numbers of the cations and [BF4]? and [PF6]? anions are calculated in the molecular solvents. It is shown that the alkyl chain length of the cations and type of anion affect the ionic association constants and limiting molar conductivities of the ILs. For a given anion (Br?), the Λm0 values decrease with increasing alkyl chain length of the cations in all the molecular solvents, whereas the KA values of the ILs decrease in organic solvents but increase in water as the alkyl chain length of the cations increases. For the [C4mim]+ cation, the limiting molar conductivities of the ILs decrease in the order Br?>[BF4]?>[PF6]?, and their ionic association constants follow the order [BF4]?>[PF6]?>Br? in water, acetone, and acetonitrile. Furthermore, and similar to the classical electrolytes, a linear relationship is observed between ln KA of the ILs and the reciprocal of the dielectric constants of the molecular solvents. The ILs are solvated to a different extent by the molecular solvents, and ionic association is affected significantly by ionic solvation. This information is expected to be useful for the modulation of the IL conductance by the alkyl chain length of the cations, type of anion, and physical properties of the molecular solvents.  相似文献   

18.
《Analytical letters》2012,45(2):321-333
Abstract

In order to selectively extract trans‐resveratrol from Chinese herbs, molecularly imprinted polymers (MIPs) were prepared with trans‐resveratrol as the template molecule. The influences of porogenic solvents and functional monomers on the recognition properties of the polymer were studied. The MIP, which was prepared in acetone using 4‐vinylpyridine as functional monomer, displayed good affinity and recognition property for the template molecule. This indicates that the 4‐vinylpyridine can form hydrogen‐bonding or ionic interaction with trans‐resveratrol. Experimental result also indicated that the MIP column can separate trans‐resveratrol from matrix components in the Polygonum cuspidatum extract.  相似文献   

19.

Three tris(oxaalkyl)phenylsilanes and two tris(oxaalkyl)phosphates were used as podand solvents in kinetic studies of proton transfer reactions between C-acids: dimethyl (4-nitrophenyl)malonate or phenyl-4-nitrophenylcyanomethane and the strong base: 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD). The acceptor numbers were measured for all new podand solvents. The kinetic parameters for studied reactions were obtained, discussed and compared with those of acetonitrile and OP(OEt) 3 as non-podand solvents. This study demonstrated that the second order rate constants strongly decreased and the energy barrier increased for the proton transfer reaction in podand solvents. Spectroscopic observations showed that ionic products were strongly stabilised and therefore their lifetime was relatively long. The podand solvents formed the ionic channels in which ionic products are strongly solvated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号