首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biosensors are based on the intimate association of a transducer and of a sensing layer. The latter can be a preformed membrane further connected to the transducer, or a thin film directly deposited on its surface. As the stability is a key parameter to be considered, a polymer with high potentialities for this purpose was chosen to form a direct surface coating: a poly(vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ). Choline oxidase was entrapped in this photo-cross-linkable gel for making an enzyme electrode through controllable steps. The influence of the ratio PVA-SbQ/enzyme was studied and the stability of the resulting modified electrodes was determined. After deposition of minute volumes (10–45 l) including no more than one unit of choline oxidase and 0.3 mg of polymer, an efficient choline sensor was obtained. It exhibited a fast response time lower than 30 s, a low detection limit of 2.5 nM choline, a wide linear range extending up toca. 10–4 M and good stability, both operational and on storage. This method appears promising for making miniaturized biosensors.  相似文献   

2.
Prussian blue nanoparticles (PBNPs) were prepared by a self‐assembly process on a glassy carbon electrode (GCE) modified with poly(o‐phenylenediamine) (PoPD) film. The stepwise fabrication process of PBNP‐modified PoPD/GCE was characterized using scanning electron microscopy and electrochemical impedance spectroscopy. The prepared PBNPs showed an average size of 70 nm and a homogeneous distribution on the surface of the modified electrode. The PBNPs/PoPD/GCE showed electrocatalytic activity towards the oxidation of pyridoxine (PN) and was used as an amperometric sensor. The modified electrode exhibited a linear response for PN oxidation over the concentration range 3–38.5 μM with a detection limit of ca 6.10 × 10?7 M (S/N = 3) and sensitivity of 2.79936 × 103 mA M?1 cm?2 using an amperometric method. The mechanism and kinetics of the catalytic oxidation reaction of PN were investigated using cyclic voltammetry and chronoamperometry. The values of α, kcat and D were estimated as 0.36, 1.089 × 102 M?1 s?1 and 8.9 × 10?5 cm2 s?1, respectively. This sensor also exhibited good anti‐interference and selectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Choline and acetylcholine sensors were prepared by using choline oxidase and acetylcholinesterase, entrapped in photocross- linkable poly(vinyl alcohol) bearing styrylpyridinium (PVA-SbQ). The measurements were based on the detection of hydrogen peroxide liberated by an enzyme reaction (choline oxidase) or two sequential enzyme reactions (acetylcholine esterase and choline oxidase). The determination range for choline was 2.5-2-150 αmol 1-1 and for acetylcholine 20-2-750 αmol 1-1. The response times were 2-2-4 min. The immobilized enzyme membranes stored in a dry state were very stable and no loss of activity was observed after storage for 60 days.  相似文献   

4.
Binary and ternary systems composed of dapsone, sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD), β‐CD and egg phosphatidylcholine (EPC) were evaluated using 1D ROESY, saturation transfer difference NMR and diffusion experiments (DOSY) revealing the binary complexes Dap/β‐CD (Ka 1396 l mol?1), Dap/SBE‐β‐CD (Ka 246 l mol?1), Dap/EPC (Ka 84 l mol?1) and the ternary complex Dap/β‐CD/EPC (Ka 18 l mol?1) in which dapsone is more soluble. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The use of a robust tyrosinase biosensor, fabricated from graphite–Teflon rigid electrode matrices modified with gold nanoparticles, for the estimation of the total phenols content in olive oil mill wastewaters (OMW), is proposed. The performance of this bioelectrode using both continuous stirring and flow-injection amperometry was studied. A potential value of ?0.10?V was selected for the sensitive and stable detection of various phenolic compounds present in OMW samples: catechol, 3,4-dihydroxycinnamic acid (caffeic acid), 3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxyphenylacetic acid, 4-hydroxyphenylethanol (tyrosol), and 4-hydroxyphenylpropionic acid. Using catechol as the target phenol, linear calibration graphs were obtained in the 1.0?×?10?8???8.0?×?10?6?mol?L?1 (batch) and 1.0?×?10?7???1.0?×?10?5?mol?L?1 (FI) concentration ranges, with slope values of 750?mA?L?mol?1 and 103?mA?L?mol?1, respectively. Batch amperometry was chosen for the analysis of real samples because of its higher sensitivity. For example, the limit of detection for caffeic acid was 80?nM. The ‘pool’ of phenolic compounds was estimated in OMW obtained from different extraction systems and containing phenols at diverse levels of concentration. A comparison of these results with those obtained by applying the Folin–Ciocalteau spectrophotometric reference method was carried out.  相似文献   

6.
In this work a gold electrode modified with self‐assembled layers (SAMs) composed with organic S‐containing compound and gold nanoparticles was prepared. The electrode with SAMs endowed with gold nanoparticles gave the high catalytic effect for ethylene glycol (EG) electrooxidation in solution at pH 7. For this novel sensor a linear relationship between the current response of EG at the potential of peak maximum (jp) and the concentration of this compound in solution (cEG) was found over the range 0.1 µM to 0.7 M with the detection sensitivity jp/cEG equal to about 5 A cm?2 mol?1 dm3 (at v=0.1 V s?1) and the detection limit of 0.046 µM.  相似文献   

7.
Titanium‐supported nanoscale flaky nickel electrode (nanoNi/Ti) was prepared by a hydrothermal process using hydrazine hydrate as a reduction agent. Its electrocatalytic activity as an electrocatalyst for the electrooxidation of glucose was evaluated in alkaline solutions using cyclic voltammetry (CV), chronoamperometric responses (CA) and electrochemical impedance spectra (EIS). The nanoNi/Ti electrode exhibits significantly high current density of glucose oxidation. A high catalytic rate constant of 1.67×106 cm3 mol?1 s?1 was calculated from amperometric responses on the nanoNi/Ti electrode. Low charge transfer resistances on the nanoNi/Ti in 0.5 M NaOH containing various concentrations of glucose were obtained according to the analysis for EIS. Furthermore, amperometric data show a linear dependence of the current density for glucose oxidation upon glucose concentration in the range of 0.05–0.6 mM with a sensitivity of 7.32 mA cm?2 mM?1. A detection limit of 0.0012 mM (1.2 μM) M glucose was found. Results show that the prepared nanoNi/Ti electrode presents high electrocatalytic activity for glucose oxidation.  相似文献   

8.
5-Methyl-1,4-naphthoquinone ( 1 ) is a remarkable probe to study hydrogen and proton transfer reactions. The photoenol 4-hydroxy-5-methylidene naphthalen-1 (5H)-one ( 2 ) is formed in the ground state within 2 ps of excitation and with a quantum yield of unity, presumably through a conical intersection of the S0 and S1 hypersurfaces. In aqueous acid, enol 2 is hydrated to 5-(hydroxymethyl)naphthalene-1,4-diol 3 (X ? OH, Scheme 1). The rate of hydration of 2 increases linearly with acid concentration from ca. 1.5 × 104 s?1 at pH 6 to reach a maximum value of 9 ×107 s?1 when the remaining carbonyl function is protonated, pKa(2+) = 1.1. Contrary to an earlier suggestion, the rate-determining step in the acid-catalyzed hydration of 2 is addition of water to the conjugate acid 2 +. Pronounced acceleration of the decay rate of 2 by hydrazoic-acid buffers indicates competitive trapping of 2 + by the azide ion. In neutral-to-weakly-basic solutions, enol 2 reacts by ionization, pKa( 2 ) = 6.5, and nearly diffusion-controlled condensation of the carbanionic species 2 ? with quinone 1 . Proto-nation at the methylidene C-atom does not compete measurably with protonation on carbonyl O-atom, despite a Substsial thermodynamic basic for carbon Portoation of ca. 50 kJ mol?1 for 2 and 100 mol?1 for 2?.  相似文献   

9.
The first excited triplet state of DNA-intercalated ethidium bromide is produced with a quantum yield of 0.010.002 on irradiation at 532 nm. A difference extinction coefficient of 1.50.2103 m2 mol?1 is measured for the triplet state at 380 nm. Mercuric ions quench the first excited singlet state of DNA-intercalated ethidium bromide via induced spin orbit coupling to give an increased yield of ethidium triplet states. The same mercuric ion that quenches the singlet state then quenches the triplet state, via the same mechanism, with a rate constant of ca 3.5103 s?1. An upper limit for the rate of detachment of Hg2+ from its binding site in DNA may be fixed at ca 103 s?1.  相似文献   

10.
The synthesis and variable temperature 1H and 13C NMR spectra of three tetrahydro-1,2,4-oxadiazines are reported. The N(4)-Me inversion barriers are 6.8–7.0 (ax→ts) and 7.4–7.9 kcal mol?1 (eq→ts) with ΔG° 0.6–0.9 kcal mol?1. The N(2)-Me inversion barriers are 10.4–11.4 (ax→ts) and 11.6–13.1 kcal mol?1 (eq→ts) with ΔGδ 1.2–1.7 kcal mol?1. The barrier to ring inversion is ca. 12.7 kcal mol?1. “R value” analysis shows the ring to have a 56.5±2δ dihedral angle about the C(5)-(6) bond, indicative of the expected chair conformation.  相似文献   

11.
A simple strategy for encapsulating choline oxidase (ChOD) into the titanate nanotubes (TNTs) and Nafion composite film for choline sensing was proposed. Hydrogen peroxide, as the product of the redox enzymatic reaction, could enhance the ECL of luminol. Therefore, the substrates of corresponding redox enzymes could be detected indirectly through the determination of hydrogen peroxide in the luminol ECL system. Through this approach, it was found that ChOD could be fixed firmly into the TNTs contained composite film. TNTs would not only offer excellent photocatalytic activity toward luminol-H2O2 ECL system, but also provide a shelter for the biomolecules, such as redox enzyme to retain its bioactivity.  相似文献   

12.
Pulsed laser polymerization was used in conjunction with aqueous‐phase size exclusion chromatography with multi‐angle laser light scattering detection to determine the propagation rate coefficient (kp) for the water‐soluble monomer acrylamide. The influence of the monomer concentration was investigated from 0.3 to 2.8 M, and kp decreased with increasing monomer concentration. These data and data for acrylic acid in water were consistent with this decrease being caused by the depletion of the monomer concentration by dimer formation in water. Two photoinitiators, uranyl nitrate and 2,2′‐azobis(2‐amidinopropane) (V‐50), were used; kp was dependent on their concentrations. The concentration dependence of kp was ascribed to a combination of solvent effects arising from association (thermodynamic effects) and changes in the free energy of activation (effects of the solvent on the structure of the reactant and transition state). Arrhenius parameters for kp (M?1 s?1) = 107.2 exp(?13.4 kJ mol?1/RT) and kp (M?1 s?1) = 107.1 exp(?12.9 kJ mol?1/RT) were obtained for 0.002 M uranyl nitrate and V‐50, respectively, with a monomer concentration of 0.32 M. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1357–1368, 2005  相似文献   

13.
The preparation of ABA‐type block copolymers via tandem enhanced spin capturing polymerization (ESCP) and nitroxide‐mediated polymerization (NMP) processes is explored in‐depth. Midchain alkoxyamine functional polystyrenes (Mn = 6200, 12,500 and 19,900 g mol?1) were chain extended with styrene as well as tert‐butyl acrylate at elevated temperature NMP conditions (T = 110 °C) generating a tandem ESCP‐NMP sequence. Although the chain extensions and thus the block copolymer formation processes function well (yielding in the case of the chain extension with styrene number average molecular weights of up to 20,800 g mol?1 (PDI = 1.22) when the 6200 g mol?1 precursor is used and up to 67,500 g mol?1 (PDI = 1.36) when the 19,900 g mol?1 precursor is used and 21,600 g mol?1 (PDI = 1.17) as well as 37,100 g mol?1 (PDI = 1.21) for the tert‐butyl acrylate chain extensions for the 6200 and 12,500 g mol?1 precursors, respectively), it is also evident that the efficiency of the block copolymer formation process decreases with an increasing chain length of the ESCP precursor macromolecules (i.e., for the 19,900 g mol?1 ESCP precursor no efficient chain extension with tert‐butyl acrylate can be observed). For the polystyrene‐blocktert‐butyl acrylate‐block‐polystyrene polymers, the molecular weights were determined via triple detection SEC using light scattering and small‐angle X‐ray scattering. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

14.
We herein report on the electrocatalytic activity towards the oxidation of NADH of a PVC/TTF‐TCNQ composite electrode modified with gold nanoparticles. This electrocatalytic property allows proposing this system as a new alternative for amperometric determination of NADH, without need to add another mediator. The sensor shows a linear response to NADH over a concentration range from 5.0×10?6 M up to 5.0×10?4 M, with a sensitivity of 11.22±0.5 mA M?1 and a detection limit (S/N=3) of 4.0×10?6 M for measurements in batch and similar data in FIA.  相似文献   

15.
The kinetics of pyridine exchange on trans-[MO2(py)4]+ have been followed by 1H-NMR in CD3NO2 for M = Re, Tc: k298S?1 = (5.5 ± 0.1) × 10?6, 0.04 ± 0.02; ΔH/kJmol?1 = 111 ± 3, 101 ± 9; ΔS/JK?1mol?1 = +28 ± 10, +68 ± 35. For the Rev complex, pyridine and oxygen exchanges have been measured simultaneously by 1H- and 17O-NMR in deuterated water: k298/s?1 = (8.6 ± 0.2) × 10?6 (py), (14.5 ± 0.3) × 10?6 (oxygen); ΔH/kJmol?1 = 111 ± 1, 91 ± 1; ΔS /JK?1mol?1 = +32 ± 3, ?32 ± 4. For both complexes, the rate law for pyridine exchange is first-order in complex and zero-order in pyridine; together with the activation parameter values, and the fact that the rate does not depend significantly on the nature of the solvent, this strongly implies the operation of a dissociative mechanism. The ratio of pyridine exchange rates for the Tc and Re complexes at room temperature is ca. 8000. The consequences of these observations for radiopharmaceutical synthesis are discussed.  相似文献   

16.
The synthesis and electropolymerization of a pyrrolic concanavalin A derivative (pyrrole‐Con A) onto a multiwalled carbon nanotube (MWCNT) deposit is reported. Glucose oxidase was then immobilized onto the MWCNT‐poly(pyrrole‐Con A) coating by affinity carbohydrate interactions with the polymerized Con A protein. The resulting enzyme electrode was applied to the amperometric detection of glucose exhibiting a high sensitivity of 36 mA cm?2 mol?1 L and a maximum current density of 350 μA cm?2.  相似文献   

17.
The mechanism by which an excess of iron(II) ion reacts with aqueous chlorine dioxide to produce iron(III) ion and chloride ion has been determined. The reaction proceeds via the formation of chlorite ion, which in turn reacts with additional iron(II) to produce the observed products. The first step of the process, the reduction of chlorine dioxide to chlorite ion, is fast compared to the subsequent reduction of chlorite by iron(II). The overall stoichiometry is The rate is independent of pH over the range from 3.5 to 7.5, but the reaction is assisted by the presence of acetate ion. Thus the rate law is given by At an ionic strength of 2.0 M and at 25°C, ku = (3.9 ± 0.1) × 103 L mol?1 s?1 and kc = (6 ± 1) × 104 L mol?1 s?1. The formation constant for the acetatoiron(II) complex, Kf, at an ionic strength of 2.0 M and 25°C was found to be (4.8 ± 0.8) × 10?2 L mol?1. The activation parameters for the reaction were determined and compared to those for iron(II) ion reacting directly with chlorite ion. At 0.1 M ionic strength, the activation parameters for the two reactions were found to be identical within experimental error. The values of ΔH? and ΔS? are 64 ± 3 kJ mol?1 and + 40 ± 10 J K?1 mol?1 respectively. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 554–565, 2004  相似文献   

18.
A nano-composite consisting of amine functionalized multi-walled carbon nanotubes and a room temperature ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) was prepared and used for modification of glassy carbon electrode. By immobilizing choline oxidase (ChOx) on the modified electrode, the enzyme direct electron transfer has been achieved. The modified electrode exhibited a pair of well-defined cyclic voltammetric peaks at a formal potential of ?0.395?V versus Ag/AgCl in 0.2?M phosphate buffer solution at pH 7.0. This peak was characteristic of ChOx-FAD/FADH2 redox couple. The electrochemical parameters such as charge transfer coefficient (??) and apparent heterogeneous electron transfer rate constant (k s) were estimated to be 0.36 and 2.74?s?1, respectively. When the enzyme electrode was examined for the detection of choline, a relatively high sensitivity (2.59???A?mM?1) was obtained. Under the optimized experimental conditions, choline was detected in the concentration range from 6.9?×?10?3 to 6.7?×?10?1?mM with a detection limit of 2.7???M. The peak currents of ChOx were reasonably stable and retained 90% of its initial current after a period of 2?months.  相似文献   

19.
《Analytical letters》2012,45(5):750-762
A simple, low cost sensor was developed for the voltammetric determination of hydrogen peroxide in mouthwash and dental whitening gel based on multi-walled carbon nanotubes incorporated with hemin. The sensor showed electrocatalytic activity toward the reduction of hydrogen peroxide in 0.05 mol L?1 Tris-HCl buffer solution (pH 7.0) using cyclic voltammetry. The optimum composition of paste was 20:10:70% (m/m/m) (multi-walled carbon nanotubes:hemin:mineral oil). A linear plot of the square root of scan rate vs. cathodic peak current showed that reduction of hydrogen peroxide is diffusion controlled. Using linear sweep voltammetry, the analytical curve ranged from 0.2 up to 1.4 mmol L?1 (r = 0.9996) with a sensitivity of 3.62 × 10?2 mA mol?1 L. The limits of detection and quantification were found to be 12.5 µmol L?1 and 41.7 µmol L?1, respectively. The developed method was applied for hydrogen peroxide determination in dental formulations. The results were compared with a volumetric method as a reference technique. No significant differences at the 95% level (paired student t test) were observed, thus demonstrating the accuracy of the sensor for the analysis of real samples.  相似文献   

20.
At bromide concentrations higher than 0.1 M, a second term must be added to the classical rate law of the bromate–bromide reaction that becomes ?d[BrO3?]/dt = [BrO3?][H+]2(k1[Br?] + k2[Br?]2). In perchloric solutions at 25°C, k1 = 2.18 dm3 mol?3 s?1 and k2 = 0.65 dm4 mol?4 s?1 at 1 M ionic strength and k1 = 2.60 dm3 mol3 s?1and k2 = 1.05 dm4 mol?4 s?1 at 2 M ionic strength. A mechanism explaining this rate law, with Br2O2 as key intermediate species, is proposed. Errors that may occur when using the Guggenheim method are discussed. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 39: 17–21, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号