首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
A novel Rh(III)-imprinted amino-functionalised silica gel sorbent was prepared by a surface imprinting technique for preconcentration and separation of Rh(III) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Compared with the traditional solid sorbents and non-imprinted polymer particles, the ion-imprinted polymers (IIPs) had higher adsorption capacity and selectivity for Rh(III). The maximum static adsorption capacity of the imprinted and non-imprinted sorbent for Rh(III) was 29.86?mg?g?1 and 11.23?mg?g?1, respectively. The imprinted Rh(III) was removed with 2?mL of 3% thiourea?+?2?mol?L?1 HCl. The obtained imprinted particles exhibited excellent selectivity and rapid kinetics process for Rh(III). The relatively selective factor (αr) values of Rh(III)/Ru(III), Rh(III)/Au(III), Rh(III)/Pt(IV), Rh(III)/Ir(IV), Rh(III)/Pd(II) were 26.7, 39.0 29.2, 28.1, 43.7, respectively, which were greater than 1. The detection limit (3σ) of the method was 0.26?µg?L?1. The relative standard deviation of the method was 1.79% for eight replicate determination of 10?µg of Rh3+ in 200?mL water sample. The method was validated by analysing standard reference material (GBW 07293), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace rhodium(III) in geological samples with satisfactory results.  相似文献   

2.
In the present study, the ?5-(4-dimethylaminobenzylidene)rhodanin-modified SBA-15? was applied as stable solid sorbent for the separation and preconcentration of trace amounts of cobalt ions in aqueous solution. SBA-15 was modified by ?5-(4-dimethylaminobenzylidene)rhodanin reagent. The sorption of Co2+ ions was done onto modified sorbent in the pH range of 6.8–7.9 and desorption occurred in 5.0 mL of 3.0 mol L?1 HNO3. The results exhibit a linear dynamic range from 0.01 to 6.0 mg L?1 for cobalt. Intra-day (repeatability) and inter-day (reproducibility) for 10 replicated determination of 0.06 mg L?1 of cobalt was ±1.82% and ?±1.97%?. Detection limit was 4.2 µg L?1 (3Sb, n = 5) and preconcentration factor was 80. The effects of the experimental parameters, including the sample pH, flow rates of sample and eluent solution, eluent type and interference ions were studied for the preconcentration of Co2+. The proposed method was applied for the determination of cobalt in standard samples, water samples and agricultural products.  相似文献   

3.
A simple and sensitive method is presented for solid phase extraction (SPE) and preconcentration of trace quantities of beryllium using octadecyl silica gel modifed with aurin tricarboxylic acid (aluminon). Beryllium is then determined by flame atomic absorption spectroscopy. Parameters affecting SPE such as pH, sample solution and eluent flow rate, type, concentration and volume of eluent, interfering ions and breakthrough volume, were investigated. Under optimal conditions, the beryllium ions were retained on the sorbent at pH 6–6.7, while 3.0 mL of 0.05 mol L?1 HNO3 is sufficient to elute the ions. The limit of detection (LOD) based on 3σ was 0.8 µg L?1 for 250 mL sample solution and 5 mL 0.05 mol L?1 HNO3 as eluent. The LOD can reach 0.1 µg L?1 for 1 L sample solution and 3 mL of 0.05 mol L?1 HNO3. The accuracy and precision (RSD %) of the method is >90% and <10%, respectively. The method was applied to the determination of beryllium in aqueous samples.  相似文献   

4.
A new Pb(II)-imprinted amino-functionalized silica gel sorbent was synthesized by an easy one-step reaction by combining a surface imprinting technique for selective solid-phase extraction of trace Pb(II) prior to its determination by inductively coupled plasma optical emission spectrometry. The Pb(II)-imprinted amino-functionalized silica gel sorbent was characterized by Fourier transform infrared spectroscopy. Compared to non-imprinted polymer particles, the ion-imprinted polymers had higher selectivity and adsorption capacity for Pb(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Pb(II) was 19.66 and 6.20 mg g?1, respectively. The largest selectivity coefficient of the Pb(II)-imprinted sorbent for Pb(II) in the presence of Cd(II) was over 450. The relative selectivity (α r) values of Pb(II)/Cd(II) were 49.3 and 46.3, which were greater than 1. The distribution ratio (D) values of Pb(II)-imprinted polymers for Pb(II) were much larger than that for Cd(II). The detection limit (3σ) was 0.20 μg L?1. The relative standard deviation was 2.0% for 11 replicate determinations. The method was validated for the analysis three certified reference materials (GBW 08301, GBW 08504, GBW 08511), and the results are in good agreement with standard values. The method was also successfully applied to the determination of trace lead in plants and water samples with satisfactory results.  相似文献   

5.
A surface molecular imprinting technology was developed to adsorb Ce(III) ions that showed much higher adsorption affinity and selectivity for than for other metal ions. The batch adsorption process was studied with respect to effects of pH value, residence time, temperature, and initial concentration of Ce(III) ion. The maximum adsorption capacity is 43 mg g?1 at an initial Ce(III) concentration of 300 mg L?1 and at a sorbent dosage of 1.0 g L?1. A Langmuir isotherm fits the experimental data. The imprinted sorbent exhibits a much higher separation and selectivity for the target imprinted ion than the non-imprinted polymer. Cerium ion can be desorbed with 1M hydrochloric acid solution which is also proven by scanning electron microoscopy and X-ray diffraction experiments. The limit of detection is 37 ng mL?1. The sorbent has been applied to the determination of trace cerium in different environmental samples with satisfactory results.  相似文献   

6.
A new sorbent – salen impregnated silica gel – was prepared and characterised for application as a minicolumn packing for flow-injection on-line preconcentration of cadmium(II). The system was coupled with flame atomic absorption spectrometer (FI-FAAS). The optimal pH for Cd(II) sorption was in the range of 7.4–8.8 and nitric acid (1%, v/v) was efficient as eluent. Sorption was most effective within the sample flow rate up to 7?mL?min?1. Sorption capacity of the sorbent found in a batch procedure was 26.3?µmol?g?1 (2.95?mg?g?1). Enrichment factor (EF) and limit of detection (LOD) obtained for 120-second loading time were 113 and 0.26?µg?L?1, respectively. The sorbent stability in the working conditions was proved for at least 100 preconcentration cycles. The evaluated method was applied to Cd(II) determination in various water samples.  相似文献   

7.
The development of a solid-phase extraction (SPE) procedure for the pre-concentration of trace amounts of Pb2+ ion on 2-furan-2-yl-1-furan-2-ylmethyl-1H-benzoimidazole loaded on activated carbon modified with silver nanoparticles (L-AC-Ag-NP) was presented. The metal ion retained on the sorbent was quantitatively determined via complexation with the ligand. The complexed metal ion was efficiently eluted using 10 mL of 4 mol L?1 sulphuric acid in 10 w/v% acetone. The influences of the analytical parameters, including pH, amounts of the ligand and the solid phase, eluent conditions and sample volume, on the recoveries of the metal ion were optimised. Using the optimised parameters, the linear response of the SPE method for Pb2+ ion were in the ranges of 0.2–160 µg L?1, and the detection limit for Pb2+ ion was 0.034 µg L?1. The proposed method exhibits a pre-concentration factor (PF) of 80 and an enhancement factor of 30 for Pb2+ ion. The presented results demonstrate the successful application of the proposed method for the determination of Pb2+ ion in some real samples with high recoveries (>93%) and reasonable relative standard deviation (RSD < 2%).  相似文献   

8.
《Analytical letters》2012,45(13):2524-2543
Abstract

Silica gel was modified by thiosalicylic acid via homogeneous routes to obtain immobilized silica gel sorbent (TSA‐immobilized silica gel). This new sorbent was characterized using variety of physical chemistry techniques including, high resolution solid state 13C and 29Si CP/MAS NMR, X‐ray photoelectron spectroscopy (XPS), thermal analysis (TGA and DTA), elemental analysis, and BET surface analysis as well as infrared spectroscopy (FTIR). New support was used for the selective extraction and concentration of lead ions by silica gel modified with thiosalicylic acid, as a highly selective and stable reagent, from aquatic samples and its determination with FAAS. Lead ions can be desorbed with 4 mol dm?3 HNO3. The sorption capacity for lead ions are found in the range of 64.40 to 69.90 µmol g?1 of chelating matrix. Tolerance limits for electrolytes and some trace metals in the sorption of lead is reported. Preconcentration factor was found as 150 for Pb(II). The lead in drinking water, mineral water, tap water, and fruit juice was quantitatively recovered with a relative standard deviation lower than 1.50%. A detection limit of the method for lead ions was found as 3.7 µg l?1.  相似文献   

9.
Silica gel surface was chemically functionalized by reaction the silanol from the silica surface with 3-chloropropyltrimethoxysilane followed by reaction with Sulfasalazine. This new sorbent has been used for the preconcentration of low levels of U(VI) ions from an aqueous phase. Parameters involved in extraction efficiency such as pH, weight of the sorbent, volume of sample and eluent were optimized in batch and column methods prior to determination by spectrophotometry using arsenazo(III) reagent. The results showed that U(VI) ions can be sorbed at pH range of 5.0–6.0 in a minicolumn and quantitative recovery of U(VI) (>98.0?±?1.6%) was achieved by stripping with 2.5 mL of 0.1 mol L?1 HCl. The sorption capacity of the functionalized silica gel was 1.15 mmol g?1 of U(VI). A linear calibration graph was obtained over the concentration range of 0.02–27.0 μg mL?1 with a limit of detection of 1 μg L?1 in treatment with 1000 mL of the U(VI) solution in which the preconcentration factor was as high as 400. The method was employed to the preconcentration of U(VI) ions from spiked ground water and synthetic sea water samples.  相似文献   

10.
A novel potentiometric sensor, based on carbon paste electrode (CPE), modified with ion-imprinted polymer (IIP) and multi-walled carbon nanotubes (MWCNTs), is introduced for detection of chromium (III). The IIP nanomaterial was synthesised and characterised by using scanning electron microscopy and Fourier Transform Infrared. The modification of the CPE with the IIP (as a ionophore) resulted in an all-solid-state Cr(III)-selective sensor. However, the presence of appropriate amount of MWCNTs in the electrode composition was found to be necessary to observe Nernstian response. The optimised electrode composition was 76.7% graphite, 14.3% binder, 5% IIP, and 4% CNT. The proposed sensor exhibited Nernstian slope of 20.2 ± 0.2 mV decade?1 in the working concentration range of 1.0 × 10?6?1.0 × 10?1 mol L?1 (52 µg L?1–5.2 g L?1), with a detection limit of 5.9 × 10?7 mol L?1 (30.68 µg L?1) and a fast response time of less than 40 s. It displayed a stable potential response in the pH range of 2–5. It exhibited also high selectivity over some interfering ions. The proposed sensor was successfully applied for the determination of Cr(III) in real samples (sea, river water and soil).  相似文献   

11.
In this paper, a highly selective Sudan IV molecularly imprinted polymer was synthesized by surface molecular imprinting technique in combination with a sol?Cgel process using ??-aminopropyl triethoxysilane as functional monomer, tetraethoxysilane as cross-linker and activated silica gel as support material. The imprinted polymer was characterized by FT-IR spectra, scanning electron micrograph and adsorption experiments and it was exhibited good recognition and selective ability, offered a faster rate for the adsorption of Sudan IV. Using the imprinted material as sorbent, a solid-phase extraction coupled with high-performance liquid chromatography method for determination of trace Sudan IV was presented. The detection limit (S/N = 3) was 25.2 ng L?1, and the RSD for five replicate was 2.86%. With a loading flow rate of 2.5 mL min?1 for loading 30 mL, an enrichment factor of 104 was achieved. This method was applied for extraction and determination of chilli powder and duck egg samples with good recoveries ranging from 85.3 to 98.1%.  相似文献   

12.
In the present study, multiwalled carbon nanotubes (MWCNTs) as solid phase extraction sorbent were developed for preconcentration of arsenic(V) species prior to graphite furnace atomic absorption spectrometry (GFAAS) determination. Arsenic(V) was selectively sorbed on the packed column with MWCNTs within a pH 9.5 in the presence of 2-(5-bromo-2-pyridylazo)-5-diethyl amino phenol (5-Br-PADAP). The adsorbed species was then desorbed with 1 mL of 2.0 M HNO3. Experimental parameters including pH, sample volume and flow rate, type, volume and concentration of eluent that influence the recovery of the arsenic(V) species were optimised. Under the optimised conditions, the calibration curve was linear in the range of 0.2–10.0 µg L?1 with detection limit of 0.016 µg L?1. The relative standard deviations (RSD) for seven replicate determinations at 1.0 µg L?1 level of arsenic was 6.69%. The proposed method was successfully applied to the determination of arsenic in water samples and certified reference material (NIST RSM 1643e).  相似文献   

13.
A new ionic liquid modified silica gel sorbent was prepared from the reaction of active silica gel with N-3-(-3-triethoxysilylepropyl)-3-methylimidazolium chloride ([(TESP)MIm]Cl). This sorbent was exploited as solid phase extractant for separation and preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). It was found that it can selectively adsorb Fe(Ш). Identification of the surface modification was performed on the basis of FT-IR. Experimental conditions for effective adsorption of trace Fe(Ш) were optimised using both batch and column procedures. At pH 3, Fe(Ш) could be quantitatively adsorbed and completely eluted by using 2?mL of 0.1?mol?L?1 of HCl. 150?mL of sample solution was adopted as the maximum sample volume and a high enrichment factor of 75 was obtained. Most common coexisting ions did not interfere with the separation and preconcentration of Fe(Ш) at optimal conditions. The maximum static adsorption capacity of the sorbent was 37.0?mg?g?1. The detection limit of the present method was 0.48?µg?L?1, and the relative standard deviation (R. S. D.) was lower than 1.7%. The method was successfully applied to the preconcentration of trace Fe(Ш) in biological and natural water samples with satisfactory results.  相似文献   

14.
An ion imprinted silica sorbent was prepared using a sol–gel process for selective extraction of Ni(II) ions from water samples. Bis(dibenzoylmethanto)nickel(II) complex was used as template; phenyltrimethoxysilane and 3-aminopropyltriethoxysilane as functional monomers and tetraethylorthosilicate as reticulating agent. The material was packed in solid-phase extraction (SPE) column. The effect of sampling volume, elution conditions, sample pH and sample flow rate on the extraction of Ni ions from water samples were studied. The relative selectivity coefficients of imprinted sorbent for Ni(II)/Co(II), Ni(II)/Cu(II) and Ni(II)/Cd(II) were 23.7, 30.3 and 24.4, times greater than non-imprinted sorbent, respectively. The relative standard deviation of the eight replicate determinations of Ni(II) was 4.2%. The detection limit was 0.9 µg L?1 using flame atomic absorption spectrometry. The developed method was successfully applied to the determination of trace nickel in water samples.  相似文献   

15.
A rapid and simple on-line method is described for the determination of Au(III) in various samples. The method is based on the sorption of gold(III) on Lewatit MonoPlus TP207 chelating resin including the iminodiacetate group, which is used as sorbent material and packed in a minicolumn. The chemical variables such as the pH of the sample solution, eluent type, interfering ions and concentrations of reagents, and instrumental variables such as sample loading volume, reagents flow rates, and tubing length, which affect the efficiency of the method were studied and optimised. Au(III) was sorbed on the chelating resin, from which it could be eluted with 3 mol L?1 HCl, and then introduced directly to the nebuliser-burner system of FAAS. The limit of detection of the method was 0.2 µg L?1 while the relative standard deviation was <4.0% for 20 µg L?1 Au(III) concentration. The preconcentration factor was found to be 106 while the optimised sample volume was 15.3 mL. The accuracy of the method was verified by analysing the certified reference material. The developed method was applied successfully for the determination of gold in different samples with satisfactory results.  相似文献   

16.
A novel magnetic dispersive solid phase extraction method using magnetic multi-walled carbon nanotubes modified with 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione potassium salt (bismuthiol II) (MMWCNTs@Bis) as the sorbent was developed for the separation and preconcentration of inorganic selenium (IV) prior to its determination by electrothermal atomic absorption spectrometry. The prepared MMWCNTs@Bis sorbent was characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer and X-ray diffraction. Total selenium was determined after reduction of Se(VI) to Se(IV) by addition of hydrochloric acid and heating the mixture in a boiling water bath. Se(VI) concentration was determined from the difference between the amounts of total selenium and Se(IV). Under the optimised experimental conditions, an enhancement factor of 196 and a detection limit (based on 3Sb/m) of 0.003 µg L?1 was obtained for aqueous samples. The relative standard deviation at 0.1 µg L?1 concentration level of Se(IV) (n = 6) was found to be 5.2 and 7.7% for intra- and inter-day analysis, respectively. The method was successfully applied to the determination of inorganic selenium species in water and total selenium in food samples.  相似文献   

17.
A highly selective imprinted amino-functionalized silica gel sorbent was prepared by combining a surface molecular imprinting technique with a sol-gel process for on-line solid-phase extraction-HPLC determination of trace pentachlorophenol (PCP) in water samples. The PCP-imprinted amino-functionalized silica sorbent was characterized by FT-IR, SEM, nitrogen adsorption and the static adsorption experiments. The imprinted functionalized silica gel sorbent exhibited high selectivity and offered a fast kinetics for the adsorption and desorption of PCP. The prepared sorbent was shown to be promising for on-line solid-phase extraction for HPLC determination of trace levels of PCP in environmental samples. With a sample loading flow rate of 5 ml min(-1) for 2 min, an enhancement factor of 670 and a detection limit (S/N = 3) of 6 ng l(-1) were achieved at a sample throughput of five samples h(-1). The precision (RSD) for nine replicate on-line sorbent extractions of 10 microgl(-1) PCP was 3.8%. The sorbent also offered good linearity (r = 0.9997) for on-line solid-phase extraction of trace levels of PCP. The method was applied to the determination of PCP in local lake water, river water and wastewater samples.  相似文献   

18.
In this study, a new Cr(III)-imprinted polymer (Cr(III)-IIP) is prepared from CrCl3·6H2O, methacrylic acid functional monomer, ethyleneglycoldimethacrylate cross-linking agent, 2,2?-azobisisobutyronitrile radical initiator and 2,2-(azanediylbis (ethane-2,1-diyl))bis(isoindoline-1,3-dione) ligand. To obtain the maximum adsorption capacity, the optimum condition was studied through pH, type and concentration of eluent, IIP weight, sample volume as well as the adsorption and desorption times. The Cr(III) ion content was determined via flame atomic absorption spectrometer. In optimum conditions, the adsorption capacity of the IIP for Cr(III) was obtained to be 74.65 mg g?1, using 50 mg of IIP and the initial pH solution of 3.0. Both the adsorption and desorption times for quantitative analyses of Cr(III) ions were 15 and 5 min; respectively. After elution of the adsorbed ions by 3 mL of 4 mol L?1 HNO3 aqueous solution, the established IIP-based SPE procedure provides a reasonable pre-concentration factor of 100. The IIP-based pre-concentration method provides a low detection limit of 1.7 µg L?1 with good repeatability (RSD?=?3.22%). Reusability studies confirmed that synthesis IIP is reusable and recoverable up to six cycles. According to the selectivity experiments, it was concluded that the prepared sorbent possesses more affinity toward Cr(III) ions than other ions such as Al3+, Pb2+, Cu2+, Mn2+, Fe2+, Zn2+, and Ni2+ ions. To evaluate the potential applicability of the proposed separation method, the pre-concentration and determination of trace amounts of Cr(III) were performed successfully in food samples with complex matrices, a bestial sample (i.e. cow liver) and an herbal product (i.e., broccoli) as real samples.  相似文献   

19.
Screen‐printed electrodes (SPEs) are cheap and disposable. But their application for heavy metal detection is limited due to the low sensitivity and poor selectivity. Here we report the ultrasensitive and simultaneous determination of Zn2+, Cd2+ and Pb2+ on a multiwalled carbon nanotubes and Nafion composite modified SPE with in situ plated bismuth film (MWCNTs/NA/Bi/SPE). The linear curves range from 0.5–100 µg L?1 for Zn2+ and 0.5–80 µg L?1 for Cd2+. Uniquely, the linear curve for Pb2+ ranges from 0.05–100 µg L?1 with a detection limit of 0.01 µg L?1. The practical application was verified in real samples with satisfactory results.  相似文献   

20.
A new (8‐hydroxyquinolin‐2‐yl)methylene picolinohydrazide derivative ( L ) has been successfully synthesized and characterized. The probe L displays high selectivity to Co2+ in CH3CN/HEPES (1:1, /, 10 mmol·L?1, pH=7.4) with a fluorescence "ON‐OFF" response. The Co2+ ion recognition event possesses some distinct features including rapid response, high selectivity and sensitivity, good anti‐interference ability and being applicable within a wide pH range. Based on job's plot and ESI‐MS studies, the 1:1 binding mode was proposed. The binding constant of L and Co2+ is 1.63×108 L·mol?1 and the detection limit is 1.15 µmol·L?1. Natural water samples experiments revealed that probe L can be potentially applied to the detection of Co2+ in real environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号