首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Analytical letters》2012,45(13):2195-2208
A sensitive and simple method for the determination of trace nickel was developed by the combination of dispersive liquid–liquid microextraction (DLLME) and microsample injection system–flame atomic absorption spectrometry (MIS–FAAS). Trace nickel was preconcentrated as the 8-hydroxyquinoline chelate by DLLME, and the conditions were optimized by a Plackett-Burman design. Quantitative recovery of nickel (98 ± 1%) was obtained by a sample volume of 7.5 mL at a pH of 6.0. The enrichment factor was 52.5, and the limits of detection and quantitation were 0.1 µ g L?1 and 3.0 µ g L?1, respectively. The method was validated by the analysis of a wastewater standard reference material, water samples, and a wire sample. The reported method has superior analytical figures of merit compared with similar methods reported in the literature.  相似文献   

2.
Ewa Stanisz 《Analytical letters》2017,50(18):2884-2899
Ligandless, task-specific ionic liquid based ultrasound-assisted dispersive liquid–liquid microextraction (TSIL-USA-DLLME) was used for preconcentration of cobalt ions in food and water samples and in vitamin supplements before analysis by electrothermal atomic absorption spectrometry. The reported method is free of toxic volatile organic solvents and does not require the use of a back-extraction step. The dispersion of extractant was achieved with the use of ultrasound. A TSIL, trioctylmethylammonium thiosalicylate (TOMATS), was served as both the extraction and complexing agent. After microextraction, the TOMATS phase was separated by centrifugation and dissolved in ethanol before analysis. Selected parameters affecting the microextraction including the pH of the sample, the volume of the ionic liquid, the ultrasonication time, centrifugation parameters, and the influence of ionic strength were optimized. The limit of detection was 0.011?ng?mL?1 for cobalt ions. The achieved preconcentration factor was 24. The relative standard deviations for the determination of analyte in the real samples were 3–24%. The accuracy of this method was evaluated by the extraction and determination of the analyte in several certified reference materials including INCT-SBF-4 (soya bean flour), INCT-TL-1 (tea leaves), ERM-CAO11b (hard drinking water), INCT-MPH-2 (mixed Polish herbs), TMDA-54.5 (Lake Ontario Water), and NIST 1643e. The measured cobalt contents were in satisfactory agreement with the certified concentrations based on Student’s t-test at the 95% confidence level. The presented method has been successfully applied for the determination of analyte in real samples that include tea, lake water, and vitamin supplements.  相似文献   

3.
Slotted quartz tube-flame atomic absorption spectrometry (SQT-FAAS) was used as a sensitive technique for the determination of cobalt, an element has toxic effects on living organisms at high doses. For the preliminary preconcentration of cobalt prior to the analysis, dispersive liquid–liquid microextraction (DLLME) was used. The instrument is equipped with a SQT to further increase the sensitivity by increasing the residence time of cobalt atoms in the light path emitted by a hollow cathode lamp. In the complex formation step, pH, the volume of buffer solution, the concentration of 1,5-diphenylcarbazone, and the volume of ligand were optimized. In addition, all of the system parameters, including the type and volume of the extraction solvent, dispersant type and volume of solvent, type of salt and the volume for the dispersion liquid–liquid microextraction, were optimized to obtain the lowest detection limit. Under the optimum conditions, the detection power of FAAS was improved by a factor of 86.56 fold using DLLME-SQT-FAAS. The limit of detection for the DLLME-SQT-FAAS system was 0.97?µg L?1. The applicability of the developed method was verified in tap and waste water samples by spiking measurements. The percentage recovery values for these were determined to be 91.7% and 111.0%, respectively.  相似文献   

4.
Ultrasound-assisted dispersive liquid–liquid microextraction was coupled with gas chromatography—mass spectrometry for the determination of phthalate esters in milk. Dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate, and dioctyl phthalate were analyzed in five brands of pasteurized Turkish milk. The efficiencies of the extraction procedure for the analytes were between 66 and 100%. The linear dynamic ranges of the calibration curves were from 0.025 to 1.000 µg/mL with correlation coefficients exceeding 0.99. The precision of the method is acceptable with relative standard deviation values below 5%. Dibutyl phthalate and bis(2-ethylhexyl) phthalate were commonly observed in milk.  相似文献   

5.
《Analytical letters》2012,45(16):2563-2571
Dispersive liquid–liquid microextraction (DLLME) technique combined with electrothermal atomic absorption spectrometry (ET-AAS) was proposed for determination of antimony(III) and total antimony at very low concentrations in water samples. The N-benzoyl-N-phenylhydroxylamine (BPHA) was used as a chelating agent, and chloroform and ethanol were used as extraction and disperser solvents, respectively. The effect of various experimental parameters on the extraction and determination was investigated. The detection limits (3σ) were 0.005 μg L?1 for Sb(III) and 0.008 μg L?1 for total Sb. The developed method was applied successfully to the determination of Sb(III) and total Sb in natural water samples.  相似文献   

6.

Rapid, inexpensive, and efficient sample-preparation by dispersive liquid–liquid microextraction (DLLME) then gas chromatography with flame ionization detection (GC–FID) have been used for extraction and analysis of BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) in water samples. In this extraction method, a mixture of 25.0 μL carbon disulfide (extraction solvent) and 1.00 mL acetonitrile (disperser solvent) is rapidly injected, by means of a syringe, into a 5.00-mL water sample in a conical test tube. A cloudy solution is formed by dispersion of fine droplets of carbon disulfide in the sample solution. During subsequent centrifugation (5,000 rpm for 2.0 min) the fine droplets of carbon disulfide settle at the bottom of the tube. The effect of several conditions (type and volume of disperser solvent, type of extraction solvent, extraction time, etc.) on the performance of the sample-preparation step was carefully evaluated. Under the optimum conditions the enrichment factors and extraction recoveries were high, and ranged from 122–311 to 24.5–66.7%, respectively. A good linear range (0.2–100 μg L−1, i.e., three orders of magnitude; r 2 = 0.9991–0.9999) and good limits of detection (0.1–0.2 μg L−1) were obtained for most of the analytes. Relative standard deviations (RSD, %) for analysis of 5.0 μg L−1 BTEX compounds in water were in the range 0.9–6.4% (n = 5). Relative recovery from well and wastewater at spiked levels of 5.0 μg L−1 was 89–101% and 76–98%, respectively. Finally, the method was successfully used for preconcentration and analysis of BTEX compounds in different real water samples.

  相似文献   

7.
Orthogonal array design was used to optimize arsenic speciation in drinking water in contact with materials by dispersive liquid–liquid microextraction followed by graphite furnace atomic absorption spectrometry. Arsenic speciation was achieved by the formation of an arsenic(III) hydrophobic complex with a new chelating agent, 1,2,6-hexanetriol trithioglycolate, at neutral pH. The complex was extracted into the organic phase, while arsenic(V) remained in aqueous solution. The concentration of As(V) was determined by subtracting As(III) from the total arsenic following the reduction of As(V) to As(III) by L-cysteine. Orthogonal array design with OA16 (44) and OA9 (33) matrices was used to optimize the efficiency of dispersive liquid–liquid microextraction and the reduction of As(V) to As(III), respectively. Under the optimal conditions, the detection limit was 0.03?µg?L?1 for As(III) and the relative standard deviation was 5.9% with an enhancement factor of 87. The calibration curve was linear from 0.19 to 3.0?µg?L?1 with a correlation coefficient of 0.9996. The developed method was used for arsenic speciation in solutions of drinking water that contacted materials. The recoveries of fortified samples were in an acceptable range from 92.0 to 113.3%.  相似文献   

8.
Here is reported a novel analytical approach for the extractive separation and determination of enantiomeric ratios of aristocularine in bovine serum albumin. The results demonstrate suitable analytical performances. The separation was performed by chiral high-performance liquid chromatography with a 5-µm column using a mobile phase of 1:1 n-hexane:ethanol at a flow rate of 0.7?mL?min?1 with ultraviolet–visible absorption, circular dichroism, and polarimetric detection. The enantiomers were eluted at 13.2 and 15.6?min for (+) and (?)-aristocularine, with a resolution of 1.58 and a separation factor of 1.27. The analytical parameters for the dispersive liquid–liquid microextraction were optimized; under these conditions, the extraction recoveries were from 88.6% to 93.9% for a two-step extraction. The precision, reported as the percent relative standard deviation, had values from 2.9% to 3.2% for 0.5?µg?mL?1 of analyte for five replicate measurements using ultraviolet–visible absorption and circular dichroism detection. The limits of detection were between 0.05 and 0.08?µg?mL?1 with enrichment ratios up to a value of 12.  相似文献   

9.
A novel method for the determination of macrolide antibiotics using dispersive liquid–liquid microextraction coupled to surface-assisted laser desorption/ionization mass spectrometric detection was developed. Acetone and dichloromethane were used as the disperser solvent and extraction solvent, respectively. A mixture of extraction solvent and disperser solvent were rapidly injected into a 1.0 mL aqueous sample to form a cloudy solution. After the extraction, macrolide antibiotics were detected using surface-assisted laser desorption/ionization mass spectrometry (SALDI/MS) with colloidal silver as the matrix. Under optimum conditions, the limits of detection (LODs) at a signal-to-noise ratio of 3 were 2, 3, 3, and 2 nM for erythromycin (ERY), spiramycin (SPI), tilmicosin (TILM), and tylosin (TYL), respectively. This developed method was successfully applied to the determination of macrolide antibiotics in human urine samples.  相似文献   

10.
A novel method, dispersive liquid–liquid microextraction coupled with liquid chromatography-variable wavelength detector (LC-VWD), has been developed for the determination of chloramphenicol (CAP) in honey. A mixture of extraction solvent (30 μL 1,1,2,2-tetrachloroethane) and dispersive solvent (1.00 mL acetonitrile) were rapidly injected by syringe into a 5.0 mL real sample for the formation of cloudy solution, the analyte in the sample was extracted into the fine droplets of C2H2Cl4. After extraction, phase separation was performed by centrifugation and the enriched analyte in the sedimented phase was determined by LC-VWD. Some important parameters, such as the kind and volume of extraction solvent and dispersive solvent, extraction time, sample solution pH, sample volume and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 3 to 2,000 μg kg?1 for target analyte. The enrichment factor for CAP was 68.2, and the limit of detection (S/N = 3) were 0.6 μg kg?1. The relative standard deviation (RSD) for the extraction of 10 μg kg?1 of CAP was 4.3% (= 6). The main advantages of method are high speed, high enrichment factor, high recovery, good repeatability and extraction solvent volume at μL level. Honey samples were successfully analyzed using the proposed method.  相似文献   

11.
《Analytical letters》2012,45(18):2871-2881
A method for determination of five herbicides (i.e., quinclorac, metsulfuron-methyl, bensulfuron-methyl, atrazine, prometryn) in soil was developed by dispersive solid-phase extraction combined with dispersive liquid–liquid microextraction and high-performance liquid chromatography. The analytes were removed from the soil by liquid partitioning with acetonitrile/5% acetic acid, purified using a octadecylsilane sorbent, and subsequently extracted before chromatographic analysis. Under the optimized conditions, the linear dynamic range was from 10.0 to 300 ng g?1 with correlation coefficients (r) between 0.9971 and 0.9985. The limits of detection were between 1.5 and 3.1 ng g?1, with relative standard deviations from 3.8% to 6.7% (n = 5). The recovery of the herbicides from soil at fortification levels of 20.0 and 100.0 ng g?1 were between 71.5% and 94.3%. The method was successfully applied to the determination of the analytes in soil.  相似文献   

12.
In the present work, a simple, rapid and sensitive sample pre-treatment technique, dispersive liquid–liquid microextraction (DLLME) coupled with liquid chromatography-fluorescence detection (LC-FLD), has been developed to determine carbamate (carbaryl) and organophosphorus (triazophos) pesticide residues in soil samples. Methanol was first used as extraction solvent for the extraction of pesticides from the soil samples and then as dispersive solvent in the DLLME procedure. Under the optimum extraction conditions, the linearity was obtained in the concentration range of 0.1–1,000 ng g?1 for carbaryl and 1–5,000 ng g?1 for triazophos, respectively. Correlation coefficients varied from 0.9997 to 0.9999. The limits of detection (LODs), based on signal-to-noise ratio (S/N) of 3, ranged from 14 to 110 pg g?1. The relative standard deviation (RSDs, for 20.0 ng g?1 of each pesticide) varied from 1.96 to 4.24% (n = 6). The relative recoveries of two pesticides from soil A1, A2 and A3 at spiking levels of 10.0, 20.0 and 50.0 ng g?1 were in the range of 88.2–108.8%, 80.8–110.7% and 81.0–111.1%, respectively. The results demonstrated that DLLME was a sensitive and accurate method to determine the target pesticides, at trace levels, in soils.  相似文献   

13.
In this study, an effective gas chromatography–tandem mass spectrometry method was developed to determine 47 pesticide residues in tea. Sample preparation involved a quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure, wherein the sample is extracted by acetonitrile and cleaned up with multiwalled carbon nanotubes and primary secondary amine adsorbents; dispersive liquid–liquid microextraction (DLLME) was subsequently performed using carbon tetrachloride as extractive solvent and the extract obtained by QuEChERS as dispersive solvent. Factors influencing DLLME efficiency, including type and volume of extractive solvent, volume of dispersive solvent, and extraction time were evaluated. For validation purposes, recovery studies were performed using matrix blanks fortified with pesticides at three concentrations, namely, 10, 50, and 100 μg kg?1. Most of the analytes were recovered at an acceptable range of 70?120% and RSDs ≤ 20% were acquired for green tea, oolong tea, black tea, and puer tea. Limits of quantification of pesticides obtained for these teas were sufficiently low, and most pesticides levels were lower than 10 μg kg?1, which satisfies the requirements for maximum residue levels (MRLs) as prescribed by the European Community. Twenty-four commercially available tea samples were analyzed using this optimized method. Results revealed that the contents of chlorpyrifos and alpha-HCH from different green tea samples exceed the MRLs, and chlorpyrifos, bifenthrin, lambda-cyhalothrin, and cypermethrin are among the most frequently detected pesticides in teas.  相似文献   

14.
A modified hollow-fiber-supported dispersive liquid-liquid microextraction (HF-DLLME) method was developed for the determination of aflatoxins and ochratoxin A in food samples. The various parameters affecting the efficiency of extraction, such as pH, salt addition, extraction time, stirring rate, desorption time, type and volume of extractant and disperser solvents were carefully studied and optimized using two step strategies. The linearity of the evaluated results was 0.1 to 30?μg L?1 for aflatoxins and 0.1 to 20?μg L?1 for ochratoxin A, with regression coefficients (R2) exceeding 0.9990. The precision was satisfactory with relative standard deviation values less than 11%. The method accuracy was within the recommended range from 70% to 120% and analyte accuracy between 83% and 101%. The limits of detection and quantification were in the range from 0.04 to 0.06?μg L?1 and 0.08 to 0.13?μg L?1, respectively, for multi-aflatoxins, and 0.02 to 0.04?µg L?1 and 0.08 to 0.10?µg L?1, respectively, for ochratoxin A. The developed method was successfully applied for the determination of mycotoxins in food samples.  相似文献   

15.
Dispersive liquid–liquid microextraction (DLLME) assisted with salting-out was applied for the determination of five aromatic amines in water samples by using gas chromatography with flame ionization detection. In this extraction method, several factors influencing the extraction efficiency of the target analytes, such as extraction and disperser solvent type and their volume, salt addition and amount, and pH, were studied and optimized. Under the optimal DLLME conditions, good linearity was observed in the range of 4–1,000 ng mL?1 with the RSDs from 1.2 to 7.9 %. The LODs based on S/N of 3 ranged from 0.2 to 3.4 ng mL?1 and the enrichment factors ranged from 207 to 4,315. The proposed method was successfully applied to the water samples collected from the tap and the lake, and the relative recoveries were in the range of 87.7–108.4 %.  相似文献   

16.
Han  Yuan Yuan  Wang  Li Yong  Zhao  Yan Yan  Li  Yue Qiu  Liu  Li Yan 《Chromatographia》2013,76(23):1747-1753

Dispersive liquid–liquid microextraction (DLLME) assisted with salting-out was applied for the determination of five aromatic amines in water samples by using gas chromatography with flame ionization detection. In this extraction method, several factors influencing the extraction efficiency of the target analytes, such as extraction and disperser solvent type and their volume, salt addition and amount, and pH, were studied and optimized. Under the optimal DLLME conditions, good linearity was observed in the range of 4–1,000 ng mL−1 with the RSDs from 1.2 to 7.9 %. The LODs based on S/N of 3 ranged from 0.2 to 3.4 ng mL−1 and the enrichment factors ranged from 207 to 4,315. The proposed method was successfully applied to the water samples collected from the tap and the lake, and the relative recoveries were in the range of 87.7–108.4 %.

  相似文献   

17.
Wang  Xia  Xu  Qing-Cai  Cheng  Chuan-Ge  Zhao  Ru-Song 《Chromatographia》2012,75(17):1081-1085

In this paper, a novel mixed ionic liquids-dispersive liquid–liquid microextraction method was developed for rapid enrichment and determination of environmental pollutants in water samples. In this method, two kinds of ionic liquids, hydrophobic ionic liquid and hydrophilic ionic liquid, were used as extraction solvent and disperser solvent, respectively. DDT and its metabolites were used as model analytes and high-performance liquid chromatography with ultraviolet detector for the analysis. Factors that may affect the extraction recoveries, such as type and volume of extraction solvent (hydrophobic ionic liquid) and disperser solvent (hydrophilic ionic liquid), extraction time, sample pH and ionic strength, were investigated and optimized. Under the optimum conditions, the linear range was 1–100 μg L−1, limits of detection could reach 0.21–0.49 μg L−1, and relative standard deviation was 6.01–8.48 % (n = 7) for the analytes. Satisfactory results were achieved when the method was applied to analyze the target pollutants in environmental water samples with spiked recoveries over the range of 85.7–106.8 %.

  相似文献   

18.
The objective of this study was to develop an analytical method based on ultrasonic-assisted dispersive liquid–liquid microextraction (DLLME) for the determination of 19 pesticides in Shengmaiyin and its resulting crude drugs Ophiopogon japonicas and Codonopis pilosula. The target compounds were qualitatively and quantitatively studied via ultrahigh-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) operated in multiple reaction-monitoring modes. The UHPLC–MS/MS conditions were optimized to complete chromatographic separation in 9 min. The correlation coefficient was higher than 0.993 for each pesticide. Average recoveries of the 19 compounds from different fortified samples ranged between 81 and 108 % with inter-RSD values below 13 %. The limits of quantification (LOQs) for 19 compounds were in the range of 0.0075–0.81 μg kg?1. Recovery LOQs of the DLLME method were compared with the routine QuEChERS method, and the results showed that the proposed method is very simple, rapid, and sensitive. This makes it a more applicable method for monitoring multiple classes of pesticides in traditional Chinese medicine.  相似文献   

19.
《Analytical letters》2012,45(16):2643-2654
Dispersive liquid–liquid microextraction based on solid formation without a disperser combined with high-performance liquid chromatography has been developed for the determination of 4-tert-butylphenol, 4-n-nonylphenol, and 4-tert-octylphenol. This method is rapid, easy, and uses only 10 µL of a low toxicity organic solvent (1-hexadecanethiol) for the extraction solvent and no disperser solvent. The extraction time and centrifugation time require less than 10 min. The linear range was 1–500 ng mL?1 for 4-tert-butylphenol, 2–1000 ng mL?1 for 4-tert-octylphenol, and 5–500 ng mL?1 for 4-n-nonylphenol with r2 ≥ 0.9986. The detection limits were between 0.2 and 1.5 ng mL?1. The recoveries of lake and river water samples were in the range of 79% to 108%, and the relative standard deviations were 5% to 10%.  相似文献   

20.
In this study, an effective method of ultrasound-assisted ionic liquid based dispersive liquid–liquid microextraction (UA?IL?DLLME) coupled with HPLC was applied for extraction and determination of two antidepressant drugs: venlafaxine hydrochloride and amitriptyline hydrochloride from human plasma samples. Three ionic liquids were studied: 1-butyl-3-methyl imidazolium hexafluorophosphate, 1-hexyl-3- methyl imidazolium hexa-fluoro-phosphate, and 1-octyl-3-methyl imidazolium hexafluorophosphate [C8MIM][PF6]. Various factors affect the stages and efficiency of extraction, some of which are pH of sample solution, type and volume of ionic liquid, the time of ultrasonication, centrifuging time and rate, and the ionic strength of solution. In this research, optimum conditions were obtained as 55 μL of [C8MIM][PF6] selected as ionic liquid, pH 11, 2% NaCl, 4 min ultrasonication and 5 min centrifuging at 3500 rpm. Under the optimized conditions, the linearity was obtained in the range of 0.2 to 250 μg/L. The limits of detection were 0.5 μg/L for venlafaxine and 0.8 μg/L for amitriptyline. Pre-concentration factors were 1.3 × 103 for venlafaxine and 1.2 × 103 for amitriptyline. The UA?IL?DLLME method coupled with HPLC was successfully used for the determination of venlafaxine and amitriptyline spiked into the real samples of human plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号