首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Analytical letters》2012,45(12):1979-1989
Abstract

Three selenium-containing compounds, diphenyl selenide, benzyl phenyl selenide and dibenzyl selenide were used as neutral carriers to make a Ag+-selective membrane electrode. All three compounds exhibited higher sensitivity to Ag+ than the corresponding sulfides and ethers. The highest sensitivity was obtained by dibenzyl selenide and an electrode constructed using this carrier and bis(l-butylpentyl) adipate as a membrane solvent in a poly(vinyl chloride) membrane matrix exhibited a near-Nernstian response to Ag+ in the concentration range from 1 x 10?5 to 1 x 10?2 M with a slope of 52 mV per concentration decade. The lower limit of detection was around 1 μM. The ion selectivity of this electrode for Ag+ was over 104 times that for other metal cations. Dibenzyl selenide and Ag+ interactions were examined by 1H-NMR spectroscopy.  相似文献   

2.
Nine monoazathiacrown ethers have been synthesized and explored as ionophores for polymeric membrane Ag+-selective electrodes. Potentiometric responses reveal that the ion-selective electrodes (ISEs) based on 2,2′-thiodiethanethiol derivatives can exhibit excellent selectivities toward Ag+. The plasticized poly(vinyl chloride) membrane electrode using 22-membered N2S5-ligand as ionophore has been characterized and its logarithmic selectivity coefficients for Ag+ over most of the interfering cations have been determined as <−8.0. Under optimal conditions, a lower detection limit of 2.2 × 10−10 M can be obtained for the membrane Ag+-ISE.  相似文献   

3.
The performance of calix[2]furano[2]pyrrole and related compounds used as neutral carriers for silver selective polymeric membrane electrode was investigated. The silver ion-selective electrode based on calix[2]furano[2]pyrroles gave a good Nernstian response of 57.1 mV per decade for silver ion in the activity range 1×10−6 to 1×10−2 M. The present silver ion-selective electrode displayed very good selectivity for Ag+ ion against alkali and alkaline earth metal ions, NH4+, and H+. In particular, the present Ag+-selective electrode exhibited very low responses towards Hg2+ and Pb2+ ions. The potentiometric selectivity coefficients of the silver ion-selective electrode exhibited a strong dependence on the solution pH. In particular, the response of the electrode to the Hg2+ activity was greatly diminished at pH 2.5 compared to that at pH 5.0. Overall, the performance of the present silver ion-selective electrode based on the ionophore, calix[2]furano[2]pyrrole, is very comparable to that of the electrode prepared with the commercially available neutral carrier in terms of slope, linear range, and detection limits.  相似文献   

4.
Two diaza-crown ether compounds were synthesized and evaluated as Ag+-selective carriers in polyvinylchloride (PVC) membrane electrodes of solid-state type. The all-solid-state PVC membrane electrode based on N,N-Dibenzyl-dibenzo-diaza-18-crown-6 exhibited a super-Nernstian response (75±10mV per decade) over the concentration range of 1×10–1 to 7×10–6M of Ag+ ion and a detection limit of 3×10–6M, at a wide range of pH (pH 4–7). The response time of the electrode was fast (less than 10s), and it can be used for three months without any significant deviation in potential. The proposed all-solid-state PVC membrane electrodes revealed high selectivity toward Ag+ ion with respect to alkali, alkaline earth, heavy and transition metal ions. A flow-through cell of all-solid-state PVC membrane Ag+-selective electrode based on N,N-Dibenzyl-dibenzo-diaza-18-crown-6 has also been prepared and applied for flow-injection analysis of Ag+ ion in solution.  相似文献   

5.
Fullerence C60‐cryptand 22 was prepared and successfully applied as the electric carrier in the PVC electrode membrane of a bifunctional ion‐selective electrode for cations, e.g., Ag+ ions as well as anions, e.g., I? ions. The bifunctional ion‐selective electrode based on C60‐cryptand 22 can be applied as a Silver (Ag+) ion selective electrode with an internal electrode solution of 10?3 M AgNO3 in water (pH = 6.3), or as an Iodide (I?) ion selective electrode with an acidic internal electrode solution of 10?4 M KI(aq) (pH = 2) in which the cryptand 22 is protonated, and the C60‐cryptand 22 is changed to C60‐Cryptand22–H+ and becomes an anionic electro‐carrier to absorb the I? ion. The Ag+ ion selective electrode based on C60‐cryptand 22 gave a linear response with a near‐Nernstian slope (59.5 mV decade?1) within the concentration range 10?1‐10?3 M Ag+(aq). The Ag+ ion electrode exhibited comparatively good selectivity for silver ions, over other transition‐metal ions, alkali and alkaline earth metal ions. The Ag+ ion selective electrode with good stability and reproducibility was successfully used for the titration of Ag+(aq) with Cl? ions. The Iodide (I?) Ion selective electrode based on protonated C60–cryptand22‐H+ also showed a linear response with a nearly Nernstian slope (58.5 mV decade?1) within 10?1 ‐ 10?3 M I? (aq) and exhibited good selectivity for I? ions and had small selectivity coefficients (10?2–10?3) for most of other anions, e.g., F? , OH?, CH3COO?, SO42?, CO32?, CrO42?, Cr2O72? and PO43? ions.  相似文献   

6.
《Analytical letters》2012,45(9):715-734
Abstract

The conditions for the determination of sodium thiophosphate and sodium S-(2-amino-ethyl)-thiophos-phate in the presence of phosphate ion using ion-selective membrane electrodes are described. Both thiophosphates (inorganic and organic) are hydrolyzed in acidic medium. The phosphate ion is determined with Pb(II) using a Pb2+ – selective membrane electrode.

Cysteamine is determined by potentiometric titration with Hg(I1) using a Ag+/S2? – crystal membrane electrode or by direct potentiometry with a Cu2+ selective membrane electrode. The results were verified by the iodination method.  相似文献   

7.
A new polystyrene based membrane electrode of methyl substituted 6,7:13,14-dibenzo-2,4,9,11-tetraphenyl-1,5,8,12-tetraazacyclotetradeca-1,4,6,8,11,13-hexaene (I) with sodium tetraphenylborate (NaTPB) and dibutyl phthalate (DBP) as anion excluder and plasticizing agent was prepared and investigated as Hg (II)-selective electrode. The electrode exhibits a Nernstian response for Hg (II) ions over a wide concentration range of 1.0 × 10−1–8.9 × 10−6 M with a slope of 30 ± 1 mV per decade concentration. It has a response time of 10 s and can be used for at least 4 months without any divergence in potentials. The membrane works satisfactorily in a partially non-aqueous medium up to a maximum 30% (v/v) content of methanol and ethanol. The proposed sensor revealed good selectivity over a wide variety of other cations including alkali, alkaline earth, heavy and transition metal ions and could be used in a pH range of 2.5–5.0. Normal interferents like Ag+, Cd2+ and Pb2+ low interfere in the working of the electrode. The electrode was successfully used in the direct determination of Hg2+ in aqueous solution.  相似文献   

8.
《Analytical letters》2012,45(14):2873-2882
ABSTRACT

A silver hexacyanoferrate(II) modified electrode is introduced as a silver-selective electrode. The electrode was prepared based on a new type of chemically modified electrodes by direct modification of the electrode surface. The electrode response characteristics were investigated by potentiometry. The calibration curve of the electrode shows a linear potentiometric response to Ag+ in the range of 10-7 - 10-2 M with detection limit of 5 × 10-8. The modified electrode described in this paper is very simple, low cost and has linear response to Ag+ with a slope of 52-55 mV per decade.  相似文献   

9.
From extraction experiments and γ-activity measurements, the exchange extraction constant corresponding to the equilibrium Ag+(aq) + 1⋅Cs+(nb) ⇆ 1⋅Ag+(nb) + Cs+(aq) taking part in the two-phase water–nitrobenzene system (where 1 = hexaarylbenzene-based receptor; aq = aqueous phase, nb = nitrobenzene phase) was evaluated to be log 10 K ex(Ag+, 1⋅Cs+) = −1.0±0.1. Further, the stability constant of the hexaarylbenzene-based receptor⋅Ag+ complex (abbreviation 1⋅Ag+) in nitrobenzene saturated with water, was calculated at a temperature of 25 °C: log 10 β nb(1⋅Ag+) = 5.5±0.2. By using quantum mechanical DFT calculations, the most probable structure of the 1⋅Ag+ complex species was solved. In this complex having C3 symmetry, the cation Ag+ synergistically interacts with the polar ethereal oxygen fence and with the central hydrophobic benzene ring via cation–π interaction.  相似文献   

10.
《Analytical letters》2012,45(14):1125-1133
Abstract

The application of a cupric ion-selective electrode with a membrane of mixed Ag2S-CuS to measure the activity of Hg(II) is presented. The linear electrode response curve which covers near three decades, from 10?5 to 10?2 mol dm?3, of mercuric concentration range was obtained, under background of acetate buffer.  相似文献   

11.
The cryptate electrode (Ag/Ag+222), prepared by immersing silver wire in a solution of silver(I) salt and the cryptand 222 (4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane) in ionic liquids have been studied. The potential of the electrode is stabilized by the equilibrium of the Ag+ ion complexation by the cryptand, similarly to the potential stabilization by the ionic product of slightly soluble salts, used in aqueous electrodes of the second kind. The Ag/Ag+222 cryptate electrode (concentration of the cryptate was much higher than the silver(I) cation concentration, [222]>[Ag+]) may be used as a reference electrode in room temperature ionic liquids. The potential of the Ag/Ag+222 electrode is less sensitive to the presence of impurities, such as halides or water, in comparison to the Ag/Ag+ electrode. After anodic or cathodic polarization, the potential of the Ag/Ag+222 electrode comes back to the initial open circuit potential quickly. Preparation of the Ag/Ag+222 reference electrode is very easy: a silver wire is immersed in a solution of Ag+ salt and cryptand 222 (both available commercially) in the ionic liquid under study.  相似文献   

12.
Novel S4O n mixed donor macrocycles (1, n=1; 2, n=2) were synthesized by the coupling reactions of corresponding dichlorides with dithiols under high dilution conditions. Synthesis and crystal structures of Tl+ and Ag+ complexes, [Tl(2)+ and Ag(2)+], with macrocycle 2 are described. The electrode based on macrocycle 2 showed excellent potentiometric sensing ability for Tl+ and Ag+ ions. This remarkable sensing of the proposed electrode can be understood in terms of the synergy effect of a soft–soft acid–base interaction and π-coordination, especially for the Tl+ ion, which was observed from the crystal structure of the corresponding complex.  相似文献   

13.
The syntheses and crystal structures of two iridium complexes, (dfppy)2IrPyCl (1) and [(dfppy)2Ir(Py)2]PF6 (2), are reported. 1 can selectively detect Ag+ with UV–vis absorption and emission spectra. In the presence of Ag+, the obvious decrease of the luminescence intensity at 476?nm was observed, which could be monitored by the naked eyes. The phosphorescence quantum yield decreases from 0.024 to 0.012. No obvious changes of the luminescence intensity were observed upon addition of a large excess of other transition metal ions. Due to the strong interaction between chloride and Ag+, the special chemical reaction induced by Ag+ is responsible for the significant change of absorption and luminescence spectra.  相似文献   

14.
13-Membered azothia- and azoxythiacrown ethers have been applied as ion carriers in ion-selective membrane electrodes. Their sensitivity and selectivity were studied towards alkali, alkaline earth, transition and heavy metal cations. It was found that membranes doped with the azoxythiacrown ether (A) show higher affinity towards Pb2+ than Cu2+ (log KCu,Pb pot = 1.7), whereas membranes with the azothiacrown ether (B) are more selective towards Cu2+ than Pb2+ (log KCu,Pb pot = -2.4). The discrimination of alkali and alkaline earth cations was found to be greater for B than for A. Electrodes with both ionophores suffered from strong interference by Ag+ and Hg2+. The relation between the carrier structure and electrode properties has been discussed.  相似文献   

15.
Double-armed and tetra-armed cyclen-based cryptands (1a1d and 2) that bridge two aromatic rings by diethyleneoxy and triethyleneoxy units were prepared. The CSI-MS of 1:1 mixtures ([Ag+]/[ligand]) indicated that these new cryptands form 1:1 complexes with Ag+. The log K values for the interaction between Ag+ and 2 was greater than those of 1a1d, double-armed cyclens (3a3c and 4), and tetra-armed cyclen (5). The Ag+-ion-induced 1H NMR spectral changes suggest that the Ag+π interactions of the Ag+ complexes with the cryptands (1a1d and 2) are stronger than those in Ag+/double-armed and tetra-armed cyclens. To visualise the Ag+?π interactions, the isosurfaces of the LUMO and HOMOs of the Ag+ complexes were calculated at the B3LYP/3–21G(*) theoretical level. The LUMO of the Ag+ ion is distorted by interaction with the HOMOs of the aromatic side arms. The calculations reveal Ag+?π interactions between the Ag+ ion and the aromatic side arms, and these are shown graphically.  相似文献   

16.
A polystyrene-based membrane of 7,8:16,17-dibenzo-6,9,15,18-tetraoxo-1,5,10,14-tetrathiacyclooctadeca-7,16-diene [Bz2Oxo4(18)dieneS4] was fabricated using sodium tetraphenylborate (NaTPB) and dioctyl phthalate (DOP) as anion excluder and plasticizing agent. The best performance was obtained from the membrane with the composition ionophore [Bz2Oxo4(18)dieneS4]:polystyrene:DOP:NaTPB, 5:100:150:10 (w/w). The response of the electrode was linear over a wide range of concentration, 1.26×10–6–1.00×10–1 mol L−1 for silver ion with a Nernstian slope of 58.4±0.1 mV per decade and a detection limit of 1.0×10−6 mol L−1. The electrode was found to be chemically inert and of adequate stability with a response time of 10 s and could be used for a period of 3 months without change of potential. It worked satisfactorily in mixtures containing up to 35% (v/v) non-aqueous content. The proposed membrane sensor had good selectivity for Ag+ over a wide variety of metal ions in the pH range 2.2–8.5. It was successfully used as an indicator electrode in potentiometric titration of silver ion. The electrode was also useful for determination of Ag+ in waste from photographic films.  相似文献   

17.
《Analytical letters》2012,45(17-18):1357-1370
Abstract

An investigation of an Ag/Ag+ reference electrode in dimethylformamide solution is reported. Simple preparation, fast response and high exchange current density characterize this reference electrode. The stability of the electrode with time and its temperature coefficient were also studied.  相似文献   

18.
The binding properties of two phenylketones (2a and 3a) and two ethylesters (2b and {3b) derived from p-tert-butyldihomooxacalix[4]arene or from p-tert-butylcalix[4]arene, in the cone conformation, towards transition (Ag+, Ni2+, Cu2+, Co2+, Zn2+, Fe2+ and Mn2+) and heavy (Cd2+, Hg2+ and Pb2+) metal cations have been determined by extraction studies with metal picrates and liquid membrane transport experiments with the same salts. The affinity of these ligands for Ag+ has also been investigated by 1H NMR spectroscopy. Both ketones are better extractants than the esters, and show a strong preference for Ag+, while Cu2+ is the most extracted cation with the esters. 1H NMR titrations with AgSO3CF3 indicate 1 : 1 complexes for all ligands, those with ketones are more stable, on the NMR time scale, than those with esters. Both esters are good carriers for Ag+, and 2b exhibits the highest transport rate (4.7 mol h-1) found until now with dihomooxacalix[4]arene derivatives.  相似文献   

19.
Substitution on the nitrogen atom, where necessary by high‐pressure SNAr reactions, of aza‐18‐crown‐6 ethers linked to heterocyclic aromatics has extended the number of potential host compounds for Ag+. The complexation of Ag+ by the new compounds has been evaluated by liquid membrane ion transport and ion extraction experiments. The nature of the binding sites of these new host compounds for Ag+ has been assessed, in DMF/D2O (4/1), by 13C nmr titration experiments with AgClO4.  相似文献   

20.
Two new inorganic-organic hybrid compounds based on α-Keggin clusters and Ag-(1H-Pyrazole) subunits, [AgL2]4[SiMo12O40] (1) and [AgL2]3[PMo12O40] (2) (L = pyrazole), have been synthesized under hydrothermal conditions and characterized by single crystal X-ray diffraction. In 1, there are two kinds of chains, the chains linked by two [AgL2]+ clusters and the other linked only by one [AgL2]+, which further connect by sharing [SiMo12O40]4? anions to construct a 2-D layer. In 2, four-supporting [PMo12O40]3? anions are fused by [Ag(1)L2]+ subunits to form a 1-D chain. Through weak interactions of Ag?O (3.091 Å) a 2-D supramolecular layer is constructed. Additionally, the electrochemical properties of title compounds and the photocatalytic properties of 2 have been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号