首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reliable, rapid and nontoxic analytical method was proposed for the simultaneous determination of 16 organophosphorus pesticides in Chinese herbal medicines. The pesticides were extracted by ethanol and the experimental variables, such as temperature, extraction time and volume of ethanol, were optimized through orthogonal array experimental design. Cleanup of extracts was performed with dispersive‐solid phase extraction using primary secondary amine as the sorbent. The determination of pesticides in the final extracts was carried out by gas chromatography–flame photometric detection. Under optimized conditions the obtained recoveries, except for isocarbophos, were in the range 73.8–123%, with relative standard deviations equal to or lower than 15.2% and limits of detection ranging from 0.001 to 0.009 mg/kg. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A method for the multiresidue analysis of 12 organochlorine pesticides in sesame seeds has been developed. The organochlorine residues in the seeds were first extracted by accelerated solvent extraction and the extract subjected to gel permeation chromatography to remove larger molecular weight materials such as proteins and waxes. The purified extract after gel permeation chromatography was analyzed by GC-ECD. Recoveries were higher than 75% for all compounds with relative standard deviations <20%. The limit of detection and limit of quantification were 1.6–3.3 and 5–10 ng g?1, respectively.  相似文献   

3.
Wang  Guo-Qing  Zhang  Dong-Fei  Wang  Su-Fang  Sun  Yu-An  Sun  Xiao-Li 《Chromatographia》2009,69(11):1347-1351

A method for the multiresidue analysis of 12 organochlorine pesticides in sesame seeds has been developed. The organochlorine residues in the seeds were first extracted by accelerated solvent extraction and the extract subjected to gel permeation chromatography to remove larger molecular weight materials such as proteins and waxes. The purified extract after gel permeation chromatography was analyzed by GC-ECD. Recoveries were higher than 75% for all compounds with relative standard deviations <20%. The limit of detection and limit of quantification were 1.6–3.3 and 5–10 ng g−1, respectively.

  相似文献   

4.
A simple extraction and cleanup procedure has been developed for the analysis of 24 organophosphorus (OP), organochlorine (OC) and pyrethroid (PY) pesticides in mineral and peat soils using modified QuEChERS method. The pesticides were extracted from the soil with acidified acetonitrile. The water was removed from the extract by salting out with sodium chloride and addition of magnesium sulfate. For OP pesticides, the extracts were cleaned up with 0.2 g of primary secondary amine packed in glass Pasteur pipette and determined by gas chromatography with flame photometric detector. For OC and PY pesticides, the extracts were cleaned up with 0.2 g of silica gel packed in a glass Pasteur pipette and determined by gas chromatography with electron capture detector. After the cleanup, the extracts had lower colour intensity and reduced matrix interferences. The recovery of the OP and OC pesticides for mineral and peat soils determined at 0.01–1.0 mg kg?1 fortification levels ranged from 79.0–120.0% and 82.2–117.6%, respectively. The detection limits for OP and OC pesticides were 0.001–0.01 and 0.002–0.005 mg kg?1, respectively. The recovery of the PY pesticides ranged from 87.5–111.7% at the detection limits of 0.002–0.010 mg kg?1. The relative standard deviations for all pesticides studied were below 10.8%. The modified method was simple, fast, and had utilized less reagents than the conventional methods. The method was applied to the determination of the pesticide residues in mineral and peat soil samples collected from the vegetable farms.  相似文献   

5.
ABSTRACT

A sensitive and selective method was developed to determine pesticides in carrots by gas chromatography–mass spectrometry following the development of an optimized extraction procedure. The method was validated for 30 organochlorine pesticides for gas chromatography with electron capture detection obtaining limit of detection from 0.18 to 0.92?µg/kg except for cis- and trans-permenthrin. Twenty-six carrot samples were analyzed and six pesticides were detected. The results compared with the accepted maximum residue levels in correlation to crop origin.  相似文献   

6.
《Analytical letters》2012,45(8):1324-1333
This study describes the validation of an analytical method employing gas chromatography with flame photometric detection for the determination of organophosphate pesticides (diazinon, disulfoton, parathion, chlorpyrifos, and malathion) in strawberries. The method employed a QuEChERS dispersive solid phase extraction for the sample preparation. QuEchERS is inexpensive, fast, and easy for the separation of the analytes from the matrix. In addition, the method provided linear calibration curves, ranging from 0.10–1.00 µg g?1, for diazinon, disulfoton, parathion, and chlorpyrifos, and 0.10–2.00 µg g?1 for malathion. Recovery studies yielded values in the range from 81.64 to 100.00%. These results demonstrated the potential of the technique for the determination of organophosphate residues in strawberries.  相似文献   

7.
《Analytical letters》2012,45(14):2461-2474
Novel, rapid, inexpensive, and simple QuEChERS extraction followed by phospholipid solid phase extraction was successfully developed and validated for the determination of methoprene, resmethrin, bifenthrin, cyhalothrin, and permethrin in lobster and shellfish tissues by gas chromatography–tandem mass spectrometry. This method is equivalent in final sample purity to the traditional gel permeation and open column chromatography sample preparation techniques, but has clear advantages due to reductions in time, labor, solvent use, and can be performed with minimal staff training. The proposed methodology was effectively applied to the analysis of North Atlantic lobster (hepatopancreas and muscle) and shellfish tissue. The linearity of the calibration curves for all analytes were R2 > 0.9991. The surrogate recoveries were 98.2 ± 18.0%, while the target compound recoveries, for fortified samples, were in the range of 62.0%–128.8% with RSD values <17.2% for all compounds. The detection limits for the analytes ranged from 0.0056 µg/g to 0.76 µg/g with 84.4–119.5% accuracy and relative standard deviations less than 3.77%.  相似文献   

8.
Solid-phase extraction and gas chromatography with electron-capture detection has been used for sensitive, simple, and reliable analysis of carfentrazone-ethyl residues in water. Carfentrazone-ethyl was enriched by use of multiwalled carbon nanotubes (MWCNT), a new adsorptive material. Several conditions affecting recovery of the analyte, for example polarity and volume of eluents, pH of water samples, and sample volume, were studied. Recovery from fortified samples, linear range, and limit of detection were evaluated. The results showed that MWCNT are an efficient SPE adsorbent for preconcentration of carfentrazone-ethyl in water. Under the optimized SPE conditions, recovery of carfentrazone-ethyl from fortified water was 81.49–91.08%, with RSD from 1.66 to 8.21%. The limits of detection and quantification were 0.01 and 0.03 µg L?1, which were lower than the MRL stipulated by the EU for individual pesticides in water (0.1 µg L?1). Finally, the method was applied to tap water and river water; the results showed that the method was suitable for detection of carfentrazone-ethyl in environmental water samples.  相似文献   

9.
Sol–gel coating technology for the preparation of solid-phase microextraction fibers involves a single-step procedure and allows for in situ creation of chemically bonded coatings which are characterized by high thermal and solvent stabilities. A novel titania sol–gel coating was prepared for the first time on a stainless steel fiber and applied for the headspace solid-phase microextraction (HS-SPME) of menthol with gas chromatography and flame ionization detection. Important parameters influencing the efficiency of SPME process, such as extraction time, extraction temperature and ionic strength, were optimized by central composite design. An extraction time of 40 min at 60 °C gave maximum extraction efficiency, when NaCl (10% w/v) was added to the aqueous sample. The analytical characteristics of the proposed method were comparable with other reported fibers. Under optimized conditions, the linearity was between 0.05 and 100 µg mL??1. The relative standard deviations (RSDs) determined at 0.5 µg mL??1 concentration level (n?=?5) were as follows: intra-day RSD 7.26%; inter-day RSD 10.87%; fiber-to-fiber RSD 9.05%. The relative recoveries determined after spiking a mint distillate sample at three concentration levels from 0.067 to 50.0 µg mL??1 varied from 86 to 102%. The proposed method was successfully applied for the analysis of menthol in peppermint samples.  相似文献   

10.
张蓉  陈跃  郑培  代莹  李莎莎  贾颖异  谢然  王金花 《色谱》2023,41(2):178-186
建立了凝胶渗透色谱(GPC)-气相色谱-离子阱质谱同时检测桔梗原药和当归提取物中101种农药残留的分析方法。方法采用乙腈超声辅助提取桔梗原药和当归提取物,浓缩提取液至近干后用乙酸乙酯-环己烷(1∶1, v/v)复溶,采用凝胶渗透色谱法(选取40 cm长、内径20 mm的凝胶渗透色谱柱)对样品进行净化,弃去前段含脂类、色素等杂质的流出液,收集17~30 min洗脱液并旋转蒸发浓缩至近干,甲苯1 mL定容上机。选用DB-5MS毛细管色谱柱分离待测物,通过离子阱质谱实现对101种农药残留的高效检测。方法通过优化前处理条件和离子阱二级质谱参数,有效降低了复杂中药基质对待测化合物的干扰,最大限度提高了样品中农药的定量准确性和回收率,101种农药3水平添加的平均回收率为58.3%~108.9%,每个添加水平10次独立重复测定的相对标准偏差为0.4%~16.5%,检出限(LOD)范围为0.2~40.0 μg/kg,可满足当前韩国、日本、欧洲规定的最大残留限量(maximum residue limits, MRLs)要求。方法具有操作简单快速、灵敏度高、重复性好等特点,凝胶渗透色谱技术的应用克服了固相萃取小柱净化容量不足的弊端,离子阱技术的应用可以进一步排除共流出基体杂质的干扰,提高定量和定性的准确性,检测效果优于常用的气相色谱-质谱法,是对中药中同时分析多种农药残留检测方法的有益补充。  相似文献   

11.
于胜良  杨桂朋  付萌 《色谱》2007,25(4):581-585
建立了用凝胶渗透色谱净化-气相色谱/串联质谱分析蘑菇中36种农药残留的方法。蘑菇中的待测农药组分在30 ℃条件下用乙酸乙酯提取,高速匀浆后通过凝胶渗透色谱净化;选用填料为中性多孔的聚苯乙烯二乙烯基苯微球体的S-X3玻璃柱(22 g,19 cm×2 cm)作为凝胶渗透色谱净化柱,流动相为乙酸乙酯-环己烷(体积比为1∶1)溶液,流速5 mL/min;收集第7~15 min流出的液体用气相色谱-三重四极杆串联质谱仪测定。在0.01~1.0 mg/L的质量浓度范围内,各种农药标准溶液的线性相关系数均大于0.99。在样品中添加36种农药(添加水平为0.01,0.05,0.10 mg/kg)的混合标准溶液,平均回收率为72.6%~117.1%,相对标准偏差为2.0%~10.8%(n=5),最低检出限为 0.1~0.7 μg/kg,最低定量限为 0.2~2 μg/kg。  相似文献   

12.
The present work describes a fully automated method based on online solid phase extraction–liquid chromatography–tandem mass spectrometry for the determination of different classes of pesticides, including acidic and polar pesticides and six thiamethoxam metabolites. Sample preconcentration was performed by extracting 4 mL of the sample with a single styrene-divinylbenzene polymer. Elution of the compounds was done within the high performance liquid chromatography gradient and tandem mass spectrometry determination was performed in the selected reaction monitoring mode, by recording 1–3 transitions per compound. The overall pretreatment and analysis time per sample was less than 15 min. Method validation was performed in drinking, ground and surface water. For nearly all compounds a recovery between 70% and 120% could be achieved. The limit of detection ranges from 1.2 to 18 ng/L in drinking water and 3.0 to 23 ng/L in ground and surface water. The correlation coefficients for a calibration range of 0.05–2 µg/L are between 0.9915 and 0.9999. The limit of quantification (LOQ) for all compounds lies below the required limit of 0.1 µg/L, to fulfil the Council Directive 98/83/EC. Most of the compounds easily reach an LOQ below 0.05 µg/L.  相似文献   

13.
《Analytical letters》2012,45(16):2477-2486
A novel solid-phase microextraction (SPME) fiber was prepared by coating multiwalled carbon nanotube (MWCNTs) on a stainless steel wire, and its characteristics were studied. To evaluate the MWCNTs coating, the fiber was used for the extraction of some organochlorine pesticides (OCPs) from water samples by Headspace SPME (HS-SPME) mode. Potential factors affecting the extraction efficiency such as extraction time, extraction temperature, agitation, ionic strength, desorption temperature, and time were also optimized. Several experiments were carried out by water spiked with target compounds to evaluate the analytical characteristics of the proposed method under optimized conditions. The linearity was from 0.1 to 10 ug/L with the linear correlation coefficients (r) ranging from 0.9956 to 0.9995. The limits of detection (LOD, S/N = 3) for these pesticides were between 0.43 and 2.13 ng/L and the precision (RSD, n = 5) was 2.53–12.25%. When this method was applied for the spiked real river sample, the relative recoveries ranged from 72.4% to 134.7% for the tested OCPs.  相似文献   

14.
An efficient and validated approach for the determination of pesticide residues in soybeans using high-resolution gel permeation chromatography in combination with gas chromatography and electron capture detection is described. Gel permeation chromatography was used to remove interfering fatty components of soybeans before gas chromatographic analysis. The limit of quantification for the seven pesticides studied was between 9 and 46 μg kg?1. The method was applied to different soybean varieties and recoveries were determined to be between 93 and 118% with RSD values below 10%.  相似文献   

15.
康庆贺  吴岩  高凯扬  李志斌 《色谱》2009,27(2):181-185
建立了松子仁中28种有机氯农药和拟除虫菊酯农药多残留的在线凝胶渗透色谱-气相色谱/质谱(GPC-GC/MS)分析方法。样品以乙腈-水(体积比为4∶1)为提取剂高速匀浆提取,提取液经Aluminium-N固相萃取柱净化,除去样品中大部分的脂肪和甾醇等干扰基质,再经在线GPC进一步除去样液中的色素和脂肪等大分子干扰物质,有效地降低了样品复杂基质带来的背景干扰。加标水平为0.05 mg/kg时,大部分农药的回收率为70%~120%,相对标准偏差小于15%。28种农药的检出限为0.002~0.05 mg/kg。采用外标法定量,方法的线性关系和回收率结果均令人满意。实验证明,该方法是一种快速、准确、灵敏度高的同时检测松子仁中农药多残留的检测方法。  相似文献   

16.
An efficient and sensitive method for simultaneous determination of 118 pesticide residues in teas has been established and validated. A multi-residue analysis of pesticides in tea involved extraction with ethyl acetate-hexane, clean-up using gel permeation chromatography (GPC) and solidphase extraction (SPE), and subsequent identification and quantification of the selected pesticides by gas chromatography-mass spectrometry (GC-MS). For most of the target analytes, optimized pretreatment processes led to no significant interference with analysis of sample matrix, and the determination of 118 compounds was achieved in about 60 min. In the linear range of each pesticide, the correlation coefficient was R 2 ≥ 0.99. At the low, medium and high three fortification levels of 0.05–2.5 mg kg−1, 118 pesticides average recoveries range from 61 % to 121 % and relative standard deviations (RSD) were in the range of 0.6–9.2 % for all analytes. The limits of detection for the method were 0.00030-0.36 mg kg−1, depending on each pesticide.  相似文献   

17.
A dispersive liquid–liquid microextraction (DLLME) method followed by gas chromatography/mass spectrometry (GC/MS) was applied for the trace determination of organochlorine pesticides in honey samples. The type and volume of organic extraction and disperser solvents, pH, effect of added salt content and centrifuging time and speed were optimized to find the appropriate extraction conditions. In DLLME, 30 µL of 1,2-dibromomethane (serving as extractant) and 1.5 mL of acetonitrile (serving as disperser) were applied. The limit of detection (3 s) and limit of quantification (10 s) for all the analytes of interest (organochlorine pesticides) varied from 0.004 to 0.07 and from 0.02 to 0.3 ng g?1, respectively. The extraction recovery ranged from 91 to 100 %, and the enrichment factors ranged from 171 to 199. The relative standard deviation was <6 % for intraday (n = 6) and <8 % interday (n = 4) measurements. The proposed DLLME–GC/MS method was confirmed to be fast, simple to perform, friendly to environment and suitable for analysis of organochlorine pesticide residues at trace levels in honey samples.  相似文献   

18.
A rapid, simple, and economical analytical approach has been developed and evaluated for the determination of six organophosphorus pesticides in camellia oil. This method is based on dispersive liquid?liquid microextraction (DLLME) following simple extraction. Oil was extracted with methanol by a high-speed blender and filtered with glass paper to remove fat. The filtrate was incorporated in the DLLME procedure. Acetonitrile was used as the dispersive solvent and chloroform as the extraction solvent. The residues were analyzed by gas chromatography–mass spectrometry. Under the optimized conditions, the recoveries were between 78.4 and 112.8% with relative standard deviations less than 12.3%. The limits of detection for the analytes were from 0.0003 to 0.0056?mg?·?kg?1. The optimized method was used for the determination of organophosphorus pesticides in camellia oil.  相似文献   

19.
A new sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was prepared as sorbent for solid‐phase extraction. The extraction efficiency of the prepared sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was assessed by using three selected organophosphorus pesticides, namely, chlorpyrifos, profenofos, and malathion. Gas chromatography–mass spectrometry was used for detection of organophosphorus pesticides. Several vital parameters were optimized to identify the best extraction conditions. Under the optimum extraction conditions, solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method showed good linearity range (0.05‐1 μg/mL) with coefficient of determination more than 0.995. The limits of detection obtained were in the range of 0.01–0.07 μg/mL and limits of quantification ranging from 0.03 to 0.21 μg/mL. The limits of detection obtained for the developed method were 2.3–6.5× lower than the limits of detection of commercial octadecyl silica sorbent. Real samples analysis was carried out by applying the developed method on red apple and purple grape samples. The developed method exhibited good recoveries (88.33–120.7%) with low relative standard deviations ranging from 1.6 to 3.3% compared to commercial octadecyl silica sorbent, which showed acceptable recoveries (70.3–100.2%) and relative standard deviations (6.3–8.8%). The solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method is presented as an alternative extraction method for determination of organophosphorus pesticides.  相似文献   

20.
《Analytical letters》2012,45(17):2723-2738
The determination of chlorophenols in wastewater with methyl chloroformate derivatization, solid phase extraction, and gas chromatography–mass spectrometry is reported. In order to employ this combined solid phase derivative extraction method, quantitative extraction was performed by the introduction of 100 mL of sample in 1.0 mol L?1 sodium hydroxide into a column containing 500 mg of packed resin at a flow rate of 1.0 mL/min. The chlorophenols were retained and derivatized quantitatively in the column by the introduction of 0.25 mL of methyl chloroformate. The derivatized analytes were eluted with 5.0 mL of hexane before the effluent was dried under a stream of nitrogen. The dried solution was diluted to a volume of 50 µL with hexane followed by analysis by gas chromatography–mass spectrometry. The preconcentration parameters were optimized and under these conditions: limits of detection from 0.010 to 0.423 µg L?1, a preconcentration factor of 2500, and precision values from 4.8 to 7.7% as the relative standard deviation were obtained. The method was employed for the analysis of water samples and the recoveries of the analytes were between 76 and 103%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号