首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sensitive and selective voltammetric method for simultaneous determination of Sb(III) and Mo(VI) using Quercetin (Q) as complexing agent is described. Optimal conditions were found to be: pH 3.7, CQ=6.0 µmol L?1 and Eacc=?0.10 V. The LOD (3σ) for Sb(III) are 0.076 and 0.040 µg L?1, whereas for Mo(VI) are 0.086 and 0.048 µg L?1 with tacc of 60 and 120 s, respectively. The method was validated using synthetic sea water (ASTM D665) and was applied to the determination of Sb(III) and Mo(VI) in natural waters with satisfactory results.  相似文献   

2.
《Analytical letters》2012,45(3):543-554
Abstract

A spectrophotometric procedure based on hydride generation and flow analysis is proposed for determination of antimony (III) [Sb(III)] and total antimony (Sb) in pharmaceutical samples. Firstly, Sb(III) reacts with hydrogen species generated in the system, forming antimony hydride. The reaction leads to a decrease in the permanganate concentration and, hence, in the intensity of the color of this specie, which is spectrophotometrically measured at 528 nm. Total Sb is determined as Sb(III) after Sb(V) reduction using 0.02% (m/v) KI. Some parameters, such as the number of channels of the gas phase separator, injection volume, coil length, and KBH4 concentration, are investigated. The system presents a frequency of ca. 100 h?1 and precision <3.0% [expressed as relative standard deviation (RSD) of 30 measurements using a 3.0 mg L?1 Sb(III) solution]. The analytical curve ranging from 0.5 mg L?1 to 5.0 mg L?1 (r>0.998; n=5) permits limit of detection (LOD) and limit of quantification (LOQ) of 83 and 250 µg L?1. For total Sb, the accuracy is checked by atomic absorption spectrometry applying the t test and the results are in accordance at the 95% confidence level. Recovery tests are used to check the accuracy for Sb(III) determination, and the recoveries are between 95% and 105%.  相似文献   

3.
A method is described for the sequential determination of Sb(III) and Sb(V) using Osteryoung square wave cathodic stripping voltammetry. It employs an in-situ plated bismuth-film on an edge-plane graphite substrate as the working electrode. Selective electro-deposition of Sb(III)/Sb(V) is accomplished by applying a potential of ?500 mV vs. Ag/AgCl, followed by reduction to stibine at a more negative potential in the stripping step. Stripping was carried out by applying a square wave waveform between ?500 and ?1400 mV to the antimony deposited. The stripping peak current at ?1150 mV is directly proportional to the concentration of Sb( III)/Sb(V). The calibration plots for Sb (III) were linear up to 12.0?µg L?1 depending on the time of deposition. The calibration plots for Sb (V) were linear up to 7.0?µg L?1, also depending on the time of deposition. The relative standard deviation in the determination of 0.1?µg L?1 of Sb(III) is 4.0% (n?=?5), and the limit of detection is as low as 2 ng L?1. In case of 0.1?µg L?1 Sb(V), the relative standard deviation is 3.0% (n?=?5) and the detection limit also is 2 ng L?1. The method was applied to the analysis of river and sea water samples.  相似文献   

4.
《Analytical letters》2012,45(12):2104-2119
Sample preparation procedures for the determination of As, Sb, and Se in carrot-fruit juice by hydride generation inductively coupled plasma optical emission spectrometry (HG-ICP OES) were examined. The applicability of a partial decomposition using aqua regia and simple dilution with a 2% (v/v) HNO3 solution were tested and compared to a traditional treatment based on the wet digestion with a HNO3/H2O2 mixture. The pre-reduction and hydride generation reaction conditions were evaluated. Under the optimal conditions, the hydrides were produced in the reaction of an acidified sample with NaBH4 after pre-reduction with ascorbic acid [0.5% (m/v)] and KI [0.5% (m/v)] in 3 mol L?1 HCl for total As and Sb, and boiling with HCl (6 mol L?1) for total Se. The best results were obtained for the aqua regia procedure, resulting in limits of detection (LODs) between 1.2–2.4 ng g?1 in the samples and recoveries from 90.9% to 109.1%. The method was successfully applied (without matrix effects) for the determination of As in dense mousse and pulp juice samples and for Sb in pulp juices. Standard solutions, processed in the same way as samples, were used for the calibration. Undecomposed matrix constituents strongly influenced Se; hence this element was determined using the method of standard addition. Concentrations of studied elements in analyzed products were at the trace level, that is, 6–32 ng g?1, 4–10 ng g?1, and 4–13 ng g?1 for Se, As, and Sb, respectively.  相似文献   

5.
Due to be able to migrate or leach from food packaging materials into the foods and/or beverages, development of a new, sensitive and selective analytical methods for low levels of antimony as a food contaminant is of great importance in terms of food safety. In this context, an ultrasonic-assisted cloud point extraction method was developed for the preconcentration and determination of antimony as Sb(III) using 4-(2-thiazolylazo)resorcinol (TAR) and 2-(2-thiazolylazo)-p-cresol (TAC) as chelating agents and sodium dodecyl sulfate as signal enhancing agent at pH 6.0 and mediated by nonionic surfactant, t-octylphenoxypolyethoxyethanol by flame atomic absorption spectrometry. Using the optimized conditions, the calibration curves obtained from Sb(III) with TAR and TAC were linear in the concentration ranges of 0.5–180 and 1–180 μg L?1 with detection limits of 0.13 and 0.28 μg L?1, respectively. The precision (as relative standard deviations, RSDs) was lower than 3.9 % (25 and 100 μg L?1, n: 6). The method accuracy was validated by the analysis of two standard reference materials. The results obtained were statistically in a good agreement with the certified values at 95 % confidence limit. The method has successfully been applied to the determination of Sb(III) and total Sb in selected beverages, milk and fruit-flavored milk products before and after pre-reduction of Sb(V) to Sb(III) with a mixture of KI/ascorbic acid in acidic media. The Sb(V) contents of samples were quantitatively calculated from analytical difference between total Sb and Sb(III) levels.  相似文献   

6.
A simple adsorptive cathodic stripping voltammetry method has been developed for antimony (III and V) speciation using 4‐(2‐thiazolylazo) – resorcinol (TAR). The methodology involves controlled preconcentration at pH 5, during which antimony(III) – TAR complex is adsorbed onto a hanging mercury drop electrode followed by measuring the cathodic peak current (Ip,c) at ?0.39 V versus Ag/AgCl electrode. The plot of Ip,c versus antimony(III) concentration was linear in the range 1.35×10?9–9.53×10?8 mol L?1.The LOD and LOQ for Sb(III) were found 4.06×10?10 and 1.35×10?9 mol L?1, respectively. Antimony(V) species after reduction to antimony(III) with Na2SO3 were also determined. Analysis of antimony in environment water samples was applied satisfactorily.  相似文献   

7.
A headspace-single drop microextraction method combined with electrothermal atomic absorption spectrometry (ETAAS) is developed for the extraction and preconcentration of antimony(III) and total antimony into a Pd(II)-containing aqueous drop after hydride generation. Experimental variables such as hydrochloric acid and sodium tetrahydroborate concentrations, sample volume, Pd(II) concentration in the acceptor phase and microextraction time were optimized. A 26-2 IV factorial fractional design was initially used for screening the effect of the variables, followed by an univariate approach. The method showed a great freedom from interferences caused by hydride-forming elements and transition metals. The detection limit of Sb(III) was 25 pg mL?1. A preconcentration factor of 176 is achieved in 3 min. The repeatability, expressed as relative standard deviation, was 4.7%. The method was validated against two certified reference materials (NWRI-TM 27.2 and NIST 2711) and applied to the determination of Sb(III) and total Sb in waters.  相似文献   

8.
《Electroanalysis》2006,18(12):1159-1166
This paper proposes a procedure for the speciation of antimony by Differential Pulse Adsorptive Stripping Voltammetry (DPAdSV) using pyrogallol red (PGR) as a complexing agent. It employs a Partial Least Squares regression (PLS) in the resolution of strongly overlapping voltammetric signals obtained from mixtures of Sb(III) and Sb(V) in the presence of pyrogallol red. The absolute value of the relative error was less than 3.5% when concentrations of several mixtures were calculated, the minimum concentrations being 9.98×10?9 mol dm?3 and 4.87×10?8 mol dm?3 for Sb(III) and Sb(V), respectively. Any undue effects caused by the presence of foreign ions in the solution were also analyzed. The procedure was successfully applied to the speciation of antimony in pharmaceutical preparations.  相似文献   

9.
A method is described for the differential determination of As(III) and As(V). and Sb(III) and Sb(V) by hydride generation-atomic absorption spectrophotometry with hydrogen-nitrogen flame using sodium borohydride solution as a reductant. For the determination of As(III) and Sb(III), most of the elements, other than Ag+, Cu2+, Sn2+, Se4+ and Te4+, do not interfere in an at least 30,000 fold excess with respect to As(III) or Sb(III). This method was applied to the determination of these species in sea water and it was found that a sample size of only 100 ml is enough to determine them with a precision of 1.5–2.5%. Analytical results for surface sea water of Hiroshima Bay were 0.72 μgl?1, 0.27 μgl?1 and 0.22 μgl?1 for As(total), As(III) and Sb(total), respectively, but Sb(III) was not detected in the present sample. The effect of acidification on storage was also examined.  相似文献   

10.
《Analytical letters》2012,45(16):2563-2571
Dispersive liquid–liquid microextraction (DLLME) technique combined with electrothermal atomic absorption spectrometry (ET-AAS) was proposed for determination of antimony(III) and total antimony at very low concentrations in water samples. The N-benzoyl-N-phenylhydroxylamine (BPHA) was used as a chelating agent, and chloroform and ethanol were used as extraction and disperser solvents, respectively. The effect of various experimental parameters on the extraction and determination was investigated. The detection limits (3σ) were 0.005 μg L?1 for Sb(III) and 0.008 μg L?1 for total Sb. The developed method was applied successfully to the determination of Sb(III) and total Sb in natural water samples.  相似文献   

11.
《Analytical letters》2012,45(14):2621-2633
Abstract

A sensitive and selective voltammetric method for determination of antimony(III) using Alizarin Red S (ARS) as complexing agent is described. The method is based on the monitoring the oxidation peak of antimony(III)-ARS complex at ?520 mV in ammonium-ammonia buffer (pH = 7.5). The peak current was measured by scanning the potential from ?700 mV versus Ag/AgClto more positive potentials without accumulation in the presence of 1 × 10?6 mol L?1 of ARS. The limit of detection (3 s) and limit of quantification (10 s) of the method were calculated from calibration curve as 1.45 µg L? and 4.8 µg L? respectively. The calibration plot for antimony(III) was linear in the range of 4.8–30 µg L?. The interference of various ions was examined. Serious interference from Al(III), Fe(III), Cu(II), Pb(II), and Zn(II) was eliminated by addition of EDTA to the solution. The method was applied to drinking water samples. The recoveries were in the range 94% – 105%. The results obtained from the developed method were compared with those from the differential-pulse anodic-stripping method and no statistically significant difference was found.  相似文献   

12.
A sensitive and simple method for flame atomic absorption spectrometry (FAAS) determination of antimony species after separation/preconcentration by cloud point extraction (CPE) has been developed. When the system temperature is higher than the cloud point extraction temperature, the complex of antimony (III) with N-benzoyl-N-phenyhydroxylamine (BPHA) can enter the surfactant-rich phase, whereas the antimony (V) remains in the aqueous phase. Antimony (III) in surfactant-rich phase was analyzed by FAAS and antimony (V) was calculated by subtracting of antimony (III) from the total antimony after reducing antimony (V) to antimony (III) by L-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of BPHA and Triton X-114, equilibration temperature and time, were investigated systematically. Under optimized conditions, the detection limits (3σ) were 1.82 ng mL−1 for Sb(III) and 2.08 ng mL−1 for Sb(total), and the relative standard deviations (RSDs) were 2.6% for Sb(III) and 2.2% for Sb(total). The proposed method was applied to the speciation of antimony species in artificial seawater and wastewater, and recoveries in the range of 95.3–106% were obtained by spiking real samples. This technique was validated by means of reference water materials and gave good agreement with certified values.  相似文献   

13.
Solidified floating organic drop microextraction was applied as a separation/preconcentration step prior to the electrothermal atomic absorption spectrometric (ETAAS) determination of ultra trace of antimony species. The method was based on the formation of an extractable complex between Sb(III) and ammonium pyrrolidinedithiocarbamate at pH ~ 5, while Sb(V) was remained in the aqueous phase. The antimony extracted into 1-undecanol was determined by ETAAS. Total antimony was determined after the reduction of Sb(V) to Sb(III) with potassium iodide and ascorbic acid. The amount of Sb(V) was determined from the difference of concentration of total antimony and Sb(III). Under the optimum conditions an enhancement factor of 437.5 and a detection limit of 5.0 ng L?1for the preconcentration of 25 mL of sample was achieved. The relative standard deviation at 300 ng L?1 of antimony was found to be 3.5 % (n = 6). The proposed method was successfully applied to the determination of antimony in tea, basil and natural water samples.  相似文献   

14.
A method was developed for the determination of arsenite [As(III)] and arsenate [As(V)] in water samples using flow injection online sorption coupled with hydride generation atomic fluorescence spectrometry (HG-AFS) using a cigarette filter as the sorbent. Selective determination of As(III) was achieved through online formation and retention of the pyrrolidine dithiocarbamate arsenic complex on the cigarette filter, but As(V) which did not form complexes was discarded. After reducing As(V) to As(III) using L-cysteine, total arsenic was determined by HG-AFS. The concentration of As(V) was calculated by the difference between As(III) and total arsenic. The analytes were eluted from the sorbent using 1.68 mol L?1 HCl. With consumption of 22 mL of the sample solution, the enrichment factor of As(III) was 25.6. The detection limits (3σ/k) and the relative standard deviation for 11 replicate determinations of 1.0 ng mL?1 As(III) were found to be 7.4 pg mL?1 and 2.6%, respectively.  相似文献   

15.
《Analytical letters》2012,45(17):2493-2507
In this work, an improved hydride-generation atomic fluorescence spectrometry (HG-AFS) method for the determination of total arsenic (As) in wastewater and sewage sludge samples was applied. The samples were digested completely with mixtures of HNO3 and HClO4. Analytical conditions were studied and optimized through uniform experimental design U*10(108) combined with a single factor test. A mathematical model was established, and a quadratic polynomial stepwise regression analysis by using the DPS software was employed to obtain the factors that impact the fluorescence intensity. This technique is then combined with a single factor test. The optimized experimental conditions were obtained as follows: PMT voltage was 305 V, lamp current was 70 mA, KBH4 concentration was 2.0% (m/v), carrier liquid (HCl) concentration was 5% (v/v), carrier gas (Ar) flow rate was 300 mL min?1, and reaction acidity was 10% (v/v) HCl. The pre-reduction of all forms of As to As(III) was performed by using a mixed solution of 1% thiourea and 1% ascorbic acid. The content of total As was determined under the optimized experimental conditions. The detection limits for total As in wastewater and sewage sludge were 0.09 µg L?1 and 0.01 mg kg?1, respectively. The linear ranges were 0.24–100 µg L?1, and the recovery was 91.0–102.0%. The relative standard deviation (RSD, n = 5) for eleven replicate measurements of the certified reference materials containing 60.6 ± 4.2 µg L?1 As (certified sample of water) and 10.7 ± 0.8 mg kg?1 As (certified sample of soil) were 3.1% and 1.6%, respectively. The proposed method was validated by the analysis of certified reference materials and was successfully applied to the determination of total As in real samples of wastewater and sewage sludge with satisfactory results.  相似文献   

16.
Surface regulation is an effective strategy to improve the performance of catalysts, but it has been rarely demonstrated for nitrogen reduction reaction (NRR) to date. Now, surface‐rough Rh2Sb nanorod (RNR) and surface‐smooth Rh2Sb NR (SNR) were selectively created, and their performance for NRR was investigated. The high‐index‐facet bounded Rh2Sb RNRs/C exhibit a high NH3 yield rate of 228.85±12.96 μg h?1 mg?1Rh at ?0.45 V versus reversible hydrogen electrode (RHE), outperforming the Rh2Sb SNRs/C (63.07±4.45 μg h?1 mg?1Rh) and Rh nanoparticles/C (22.82±1.49 μg h?1 mg?1Rh), owing to the enhanced adsorption and activation of N2 on high‐index facets. Rh2Sb RNRs/C also show durable stability with negligible activity decay after 10 h of successive electrolysis. The present work demonstrates that surface regulation plays an important role in promoting NRR activity and provides a new strategy for creating efficient NRR electrocatalysts.  相似文献   

17.
A spectrophotometric method for the selective determination of antimony (III) and (V) in antileishmanial drugs is described. The procedure is based on the reaction of Sb(III) with bromopyrogallol red (BPR) in neutral solution. As a consequence of the Sb-BPR complex formed, the absorbance of BPR, at 560 nm, decreases proportionally to the amount of Sb(III) in the analyte solution. The calculated apparent molar absorptivity and determination limits are 3.67 × 104 L?·?cm–1?·?mol–1 and 1.65 × 10–6 mol/L, respectively. Sb(V) is determined after reduction to Sb(III) by iodide. The Sb(V) content determined in ten samples of Glucantime varied from 75.40 ± 0.97 to 94.47 ± 1.0 mg/mL. Sb(III) was detected in all samples analyzed, and mean values ranged from 5.19 ± 0.16 to 10.52 ± 0.15 mg/mL. The method is suitable for the routine quality control of pharmaceutical formulations.  相似文献   

18.
The dark reduction kinetics of micromolar concentrations of Fe(III) in aqueous solution were studied in the presence of millimolar concentrations of ferrozine (FZ) over the pH range 4.0–7.0. A pseudo-first-order kinetics model was used to describe Fe(III) reduction at pH 4.0 and 5.0, and the reduction rate decreased with increasing pH or initial Fe(III) concentration. A more molecular-based kinetics model was developed to describe Fe(III) reduction at pH 6.0 and 7.0. From this model, the intrinsic rate constants (k1) of Fe(III) reduction by FZ in the dark were obtained as 0.133 ± 0.004 M?1 s?1 at pH 6.0 and 0.101 ± 0.009 M?1 s?1 at pH 7.0. It was also found in this model that a higher pH, a higher concentration of Fe(III), a lower concentration of FZ and less incubation time led to a lower fraction of Fe(III) reduction by FZ in the dark.  相似文献   

19.
A novel potentiometric sensor, based on carbon paste electrode (CPE), modified with ion-imprinted polymer (IIP) and multi-walled carbon nanotubes (MWCNTs), is introduced for detection of chromium (III). The IIP nanomaterial was synthesised and characterised by using scanning electron microscopy and Fourier Transform Infrared. The modification of the CPE with the IIP (as a ionophore) resulted in an all-solid-state Cr(III)-selective sensor. However, the presence of appropriate amount of MWCNTs in the electrode composition was found to be necessary to observe Nernstian response. The optimised electrode composition was 76.7% graphite, 14.3% binder, 5% IIP, and 4% CNT. The proposed sensor exhibited Nernstian slope of 20.2 ± 0.2 mV decade?1 in the working concentration range of 1.0 × 10?6?1.0 × 10?1 mol L?1 (52 µg L?1–5.2 g L?1), with a detection limit of 5.9 × 10?7 mol L?1 (30.68 µg L?1) and a fast response time of less than 40 s. It displayed a stable potential response in the pH range of 2–5. It exhibited also high selectivity over some interfering ions. The proposed sensor was successfully applied for the determination of Cr(III) in real samples (sea, river water and soil).  相似文献   

20.
We report the simultaneous electroanalytical determination of Pb2+ and Cd2+ by linear sweep anodic stripping voltammetry (LSASV) using an antimony nanoparticle modified boron doped diamond (Sb‐BDD) electrode. Sb deposition was performed in situ with the analytes, from a solution of 1 mg L?1 SbCl3 in 0.1 M HCl (pH 1). Pb2+ inhibited the detection of Cd2+ during simultaneous additions at the bare BDD electrode, whereas in the presence of antimony, both peaks were readily discernable and quantifiable over the linear range 50–500 μg L?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号