首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hele-Shaw flow at vanishing surface tension is ill-defined. In finite time, the flow develops cusp-like singularities. We show that this ill-defined problem admits a weak dispersive solution when singularities give rise to a graph of shock waves propagating into the viscous fluid. The graph of shocks grows and branches. Velocity and pressure have finite discontinuities across the shock. We formulate a few simple physical principles which single out the dispersive solution and interpret shocks as lines of decompressed fluid. We also formulate the dispersive weak solution in algebro-geometrical terms as an evolution of the Krichever-Boutroux complex curve. We study in detail the most generic (2, 3)-cusp singularity, which gives rise to an elementary branching event. This solution is self-similar and expressed in terms of elliptic functions.  相似文献   

2.
In Hele-Shaw flows at vanishing surface tension, the boundary of a viscous fluid develops cusp-like singularities. In recent papers Lee et al. (2009, 2008) [8] and [9] we have showed that singularities trigger viscous shocks propagating through the viscous fluid. Here we show that the weak solution of the Hele-Shaw problem describing viscous shocks is equivalent to a semiclassical approximation of a special real solution of the Painlevé I equation. We argue that the Painlevé I equation provides an integrable deformation of the Hele-Shaw problem which describes flow passing through singularities. In this interpretation shocks appear as Stokes level-lines of the Painlevélinear problem.  相似文献   

3.
We show that singularities developed in the Hele-Shaw problem have a structure identical to shock waves in dissipativeless dispersive media. We propose an experimental setup where the cell is permeable to a nonviscous fluid and study continuation of the flow through singularities. We show that a singular flow in this nontraditional cell is described by the Whitham equations identical to Gurevich-Pitaevski solution for a regularization of shock waves in Korteveg-de Vriez equation. This solution describes regularization of singularities through creation of disconnected bubbles.  相似文献   

4.
顾为民  卢炬甫 《中国物理快报》2004,21(12):2551-2554
We study the problem of standing shocks in viscous disc-like accretion flows around black holes. For the first time we parametrize such a flow with two physical constants, namely the specific angular momentum accreted by the black hole j and the energy quantity K. By providing the global dependence of shock formation in the j- K parameter space, we show that a significant parameter region can ensure solutions with Rankine-Hugoniot shocks; and that the possibilities of shock formation are the largest for inviscid flows, decreasing with increasing viscosity, and ceasing to exist for a strong enough viscosity. Our results support the view that the standing shock is an essential ingredient in black hole accretion discs and is a general phenomenon in astrophysics, and that there should be a continuous change from the properties of inviscid flows to those of viscous ones.  相似文献   

5.
We consider shock measures in a class of conserving stochastic particle systems on ℤ. These shock measures have a product structure with a step-like density profile and include a second class particle at the shock position. We show for the asymmetric simple exclusion process, for the exponential bricklayers’ process, and for a generalized zero range process, that under certain conditions these shocks, and therefore the second class particles, perform a simple random walk. Some previous results, including random walks of product shock measures and stationary shock measures seen from a second class particle, are direct consequences of our more general theorem. Multiple shocks can also be handled easily in this framework. Similar shock structure is also found in a nonconserving model, the branching coalescing random walk, where the role of the second class particle is played by the rightmost (or leftmost) particle.  相似文献   

6.
This paper aims at identifying and analyzing the influence of high-frequency, high-intensity ultrasonic radiation at the interface between immiscible (different types of oils and aqueous solutions) and miscible (different types of oil and solvent) fluids. An extensive set of Hele-Shaw type experiments were performed for several viscosity ratios, and interfacial tension. Fractal analysis techniques were applied to quantify the degree of fingering and branching. This provided a rough assessment of the degree of perturbation generated at the interface when the capillary forces along with the viscous forces are effective. Miscible Hele-Shaw experiments were also presented to isolate the effect of viscous forces. We found that ultrasound acts to stabilize the interfacial front, and that such effect is most pronounced at low viscosity ratios. An erratum to this article is available at .  相似文献   

7.
We discuss the role played by velocity-dependent boundary conditions in several problems of non-local interface dynamics. Qualitative and quantitative effects are demonstrated through three examples which are: (i) quantitative verification of the scenario of ‘microscopic solvability’ in pattern selection for the case of viscous fingering in a rectangular Hele-Shaw cell, (ii) detection of the presence of this type of boundary condition through an analysis of the statistical properties of the interface for radial Hele-Shaw flow and, (iii) generation of qualitatively different interface morphologies by tuning the magnitude of this effect in the case of radial Hele-Shaw flow. We also point out the possible implications of this last example for the observation of similar morphologies in some problems of solidification.  相似文献   

8.
Stability of Viscous Shocks in Isentropic Gas Dynamics   总被引:1,自引:0,他引:1  
In this paper, we examine the stability problem for viscous shock solutions of the isentropic compressible Navier–Stokes equations, or p-system with real viscosity. We first revisit the work of Matsumura and Nishihara, extending the known parameter regime for which small-amplitude viscous shocks are provably spectrally stable by an optimized version of their original argument. Next, using a novel spectral energy estimate, we show that there are no purely real unstable eigenvalues for any shock strength. By related estimates, we show that unstable eigenvalues are confined to a bounded region independent of shock strength. Then through an extensive numerical Evans function study, we show that there are no unstable spectra in the entire right-half plane, thus demonstrating numerically that large-amplitude shocks are spectrally stable up to Mach number M ≈ 3000 for 1 ≤ γ ≤ 3. This strongly suggests that shocks are stable independent of amplitude and the adiabatic constant γ. We complete our study by showing that finite-difference simulations of perturbed large-amplitude shocks converge to a translate of the original shock wave, as expected. This work was supported in part by the National Science Foundation award numbers DMS-0607721 and DMS-0300487.  相似文献   

9.
We study viscous fingering patterns in a lifting Hele-Shaw cell, where a non-Newtonian fluid (oil paint) is displaced by air. The lengths of the air fingers are measured and their cumulative distribution is seen to follow a power law with log-periodic oscillations indicating the presence of discrete scale invariance. Received 21 May 1999  相似文献   

10.
The Saffman-Taylor viscous fingering instability occurs when a less viscous fluid displaces a more viscous one between narrowly spaced parallel plates in a Hele-Shaw cell. Experiments in radial flow geometry form fan-like patterns, in which fingers of different lengths compete, spread and split. Our weakly nonlinear analysis of the instability predicts these phenomena, which are beyond the scope of linear stability theory. Finger competition arises through enhanced growth of sub-harmonic perturbations, while spreading and splitting occur through the growth of harmonic modes. Nonlinear mode-coupling enhances the growth of these specific perturbations with appropriate relative phases, as we demonstrate through a symmetry analysis of the mode coupling equations. We contrast mode coupling in radial flow with rectangular flow geometry.  相似文献   

11.
We simulate viscous fingering generated by separating two plates with a constant force, in a lifting Hele-Shaw cell. Variation in the patterns for different fluid viscosity and lifting force is studied. Viscous fingering is strongly affected by anisotropy. We report a computer simulation study of fingering patterns, where circular or square grooves are etched on to the lower plate. Results are compared with experiments.  相似文献   

12.
We study the focusing of noncircular shock waves in a perfect gas. We construct an explicit self-similar solution by combining three convergent plane waves with regular shock reflections between them. We then show, with a numerical Riemann solver, that there are initial conditions with smooth shocks whose intermediate asymptotic stage is described by the exact solution. Unlike the focusing of circular shocks, our self-similar shocks have bounded energy density.  相似文献   

13.
We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. This situation is disastrous for numerical computation, as small roundoff errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. The method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self intersections of the interface) is also pointed out.  相似文献   

14.
We show that the semiclassical dynamics of an electronic droplet, confined in a plane in a quantizing inhomogeneous magnetic field in the regime where the electrostatic interaction is negligible, is similar to viscous (Saffman-Taylor) fingering on the interface between two fluids with different viscosities confined in a Hele-Shaw cell. Both phenomena are described by the same equations with scales differing by a factor of up to 10(-9). We also report the quasiclassical wave function of the droplet in an inhomogeneous magnetic field.  相似文献   

15.
Fast thermalization and a strong buildup of the elliptic flow of QCD matter as found at RHIC are understood as the consequence of perturbative QCD (pQCD) interactions within the 3+1 dimensional parton cascade BAMPS. The main contributions stem from pQCD bremsstrahlung 2↔3 processes. By comparison to Au+Au data of the flow parameter v2 as a function of participation number the shear viscosity to entropy ratio is dynamically extracted, which lies in the range of 0.08 and 0.2, depending on the chosen coupling constant and freeze out condition. Furthermore, first simulations on the temporal propagation of dissipative shock waves are given. The cascade can either simulate true ideal shocks as well as initially diluted, truly viscous shocks, depending on the employed cross sections or mean free path, respectively.  相似文献   

16.
将空间—时间守恒(STC)格式应用于求解N-S方程,并对激波—边界层相互作用问题进行了计算。结果表明,该方法可捕获激波与边界层相互作用的各种现象,显示了优良的数值模拟性能。  相似文献   

17.
注塑模充模过程动态分析的有限元/控制体积法   总被引:5,自引:0,他引:5  
塑料熔体在三维薄壁型腔内的流动属于带有运动边界的粘性不可压流体的流动,基于粘性广义Hele-Shaw流动理论,利用控制体积法建立了求解压力场的有限元方程,耦合利用有限元控制体积法自动跟踪熔体的运动边界,实现了充模过程的动态模拟.  相似文献   

18.
将空间-时间守恒(STC)格式应用于求解N-S方程,并对激波-边界层相互作用问题进行了计算.结果表明,该方法可捕获激波与边界层相互作用的各种现象,显示了优良的数值模拟性能。  相似文献   

19.
We show, both theoretically and experimentally, that the interface between two viscous fluids in a Hele-Shaw cell can be nonlinearly unstable before the Saffman-Taylor linear instability point is reached. We identify the family of exact elastica solutions [Nye et al., Eur. J. Phys. 5, 73 (1984)]] as the unstable branch of the corresponding subcritical bifurcation which ends up at a topological singularity defined by interface pinchoff. We devise an experimental procedure to prepare arbitrary initial conditions in a Hele-Shaw cell. This is used to test the proposed bifurcation scenario and quantitatively asses its practical relevance.  相似文献   

20.
In this paper, the behavior of shock-capturing methods in Lagrangian coordinate is investigated. The relation between viscous shock and inviscid one is analyzed quantitatively, and the procedure of a viscous shock formation and propagation with a jump type initial data is described. In general, a viscous shock profile and a discontinuous one include different energy and momentum, and these discrepancies result in the generation of waves in all families when a single wave Riemann problem (shock or rarefaction) is solved. Employing this method, some anomalous behavior, such as, viscous shock interaction, shock passing through ununiform grids, postshock oscillations and lower density phenomenon is explained well. Using some classical schemes to solve the inviscid flow in Lagrangian coordinate may be not adequate enough to correctly describe flow motion in the discretized space. Partial discrepancies between von Neumann artificial viscosity method and Godunov method are exhibited. Some reviews are given to those methods which can ameliorate even eliminate entropy errors. A hybrid scheme based on the understanding to the behavior of viscous solution is proposed to suppress the overheating error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号