首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we apply the method of potentials for studying the Dirichlet and Neumann boundary-value problems for a B-elliptic equation in the form
$ \Delta _{x'} u + B_{x_{p - 1} } u + x_p^{ - \alpha } \frac{\partial } {{\partial x_p }}\left( {x_p^\alpha \frac{{\partial u}} {{\partial x_p }}} \right) = 0 $ \Delta _{x'} u + B_{x_{p - 1} } u + x_p^{ - \alpha } \frac{\partial } {{\partial x_p }}\left( {x_p^\alpha \frac{{\partial u}} {{\partial x_p }}} \right) = 0   相似文献   

2.
This paper is devoted to studying the initial value problems of the nonlinear Kaup Kupershmidt equations δu/δt + α1 uδ^2u/δx^2 + βδ^3u/δx^3 + γδ^5u/δx^5 = 0, (x,t)∈ E R^2, and δu/δt + α2 δu/δx δ^2u/δx^2 + βδ^3u/δx^3 + γδ^5u/δx^5 = 0, (x, t) ∈R^2. Several important Strichartz type estimates for the fundamental solution of the corresponding linear problem are established. Then we apply such estimates to prove the local and global existence of solutions for the initial value problems of the nonlinear Kaup- Kupershmidt equations. The results show that a local solution exists if the initial function u0(x) ∈ H^s(R), and s ≥ 5/4 for the first equation and s≥301/108 for the second equation.  相似文献   

3.
For the solutions of the elliptic equation
$ \sum\limits_{k = 0}^n {A_k \frac{{\partial ^n f}} {{\partial x^{n - k} \partial y^k }} = 0} $ \sum\limits_{k = 0}^n {A_k \frac{{\partial ^n f}} {{\partial x^{n - k} \partial y^k }} = 0}   相似文献   

4.
In this paper we generalize the method used to prove the Prime Number Theorem to deal with finite fields, and prove the following theorem:
$ \pi (x) = \frac{q} {{q - 1}}\frac{x} {{\log _q x}} + \frac{q} {{(q - 1)^2 }}\frac{x} {{\log _q^2 x}} + O\left( {\frac{x} {{\log _q^3 x}}} \right),x = q^n \to \infty $ \pi (x) = \frac{q} {{q - 1}}\frac{x} {{\log _q x}} + \frac{q} {{(q - 1)^2 }}\frac{x} {{\log _q^2 x}} + O\left( {\frac{x} {{\log _q^3 x}}} \right),x = q^n \to \infty   相似文献   

5.
Wavelet–type transform associated with singular Laplace–Bessel differential operator is introduced and the relevant Calderón–type reproducing formula is established. Representations of the generalized Bessel potentials 0)$ " align="middle" border="0"> and their inverses via the wavelet–type transform are obtained.  相似文献   

6.
This paper is devoted to studying the initial value problem of the modified nonlinear Kawahara equation the first partial dervative of u to t ,the second the third +α the second partial dervative of u to x ,the second the third +β the third partial dervative of u to x ,the second the thire +γ the fifth partial dervative of u to x = 0,(x,t)∈R^2.We first establish several Strichartz type estimates for the fundamental solution of the corresponding linear problem. Then we apply such estimates to prove local and global existence of solutions for the initial value problem of the modified nonlinear Karahara equation. The results show that a local solution exists if the initial function uo(x) ∈ H^s(R) with s ≥ 1/4, and a global solution exists if s ≥ 2.  相似文献   

7.
The main purpose of this paper is to study the hybrid mean value of $ \frac{{L'}} {L}(1,\chi ) $ \frac{{L'}} {L}(1,\chi ) and Gauss sums by using the estimates for trigonometric sums as well as the analytic method. An asymptotic formula for the hybrid mean value $ \sum\limits_{\chi \ne \chi _0 } {|\tau (\chi )||\frac{{L'}} {L}(1,\chi )|^{2k} } $ \sum\limits_{\chi \ne \chi _0 } {|\tau (\chi )||\frac{{L'}} {L}(1,\chi )|^{2k} } of $ \frac{{L'}} {L} $ \frac{{L'}} {L} and Gauss sums will be proved using analytic methods and estimates for trigonometric sums.  相似文献   

8.
Considering the positive d-dimensional lattice point Z + d (d ≥ 2) with partial ordering ≤, let {X k: kZ + d } be i.i.d. random variables taking values in a real separable Hilbert space (H, ‖ · ‖) with mean zero and covariance operator Σ, and set $ S_n = \sum\limits_{k \leqslant n} {X_k } $ S_n = \sum\limits_{k \leqslant n} {X_k } , nZ + d . Let σ i 2, i ≥ 1, be the eigenvalues of Σ arranged in the non-increasing order and taking into account the multiplicities. Let l be the dimension of the corresponding eigenspace, and denote the largest eigenvalue of Σ by σ 2. Let logx = ln(xe), x ≥ 0. This paper studies the convergence rates for $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) . We show that when l ≥ 2 and b > −l/2, E[‖X2(log ‖X‖) d−2(log log ‖X‖) b+4] < ∞ implies $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} , where Γ(·) is the Gamma function and $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } .  相似文献   

9.
Let $ \mathbb{B} $ \mathbb{B} be the unit ball in ℂ n and let H($ \mathbb{B} $ \mathbb{B} ) be the space of all holomorphic functions on $ \mathbb{B} $ \mathbb{B} . We introduce the following integral-type operator on H($ \mathbb{B} $ \mathbb{B} ):
$ I_\phi ^g (f)(z) = \int\limits_0^1 {\operatorname{Re} f(\phi (tz))g(tz)\frac{{dt}} {t}} ,z \in \mathbb{B}, $ I_\phi ^g (f)(z) = \int\limits_0^1 {\operatorname{Re} f(\phi (tz))g(tz)\frac{{dt}} {t}} ,z \in \mathbb{B},   相似文献   

10.
The regular solutions of generalized axisymmetric potential equation , a>−1/2 are called generalized axisymmetric potentials. In this paper, the characterizations of lower order and lower type of entire GASP in terms of their approximation error {En} have been obtained.  相似文献   

11.
The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces $ \hat H_s^r \left( \mathbb{R} \right) $ \hat H_s^r \left( \mathbb{R} \right) defined by the norm
$ \left\| {v_0 } \right\|_{\hat H_s^r \left( \mathbb{R} \right)} : = \left\| {\left\langle \xi \right\rangle ^s \widehat{v_0 }} \right\|_{L_\xi ^{r'} } , \left\langle \xi \right\rangle = \left( {1 + \xi ^2 } \right)^{\frac{1} {2}} , \frac{1} {r} + \frac{1} {{r'}} = 1 $ \left\| {v_0 } \right\|_{\hat H_s^r \left( \mathbb{R} \right)} : = \left\| {\left\langle \xi \right\rangle ^s \widehat{v_0 }} \right\|_{L_\xi ^{r'} } , \left\langle \xi \right\rangle = \left( {1 + \xi ^2 } \right)^{\frac{1} {2}} , \frac{1} {r} + \frac{1} {{r'}} = 1   相似文献   

12.
We study the system $D_{0y}^\alpha u_i + ( - 1)^{i - 1} \lambda \frac{\partial } {{\partial x}}u_i = a_{i1} u_1 + a_{i2} u_2 + f_i $D_{0y}^\alpha u_i + ( - 1)^{i - 1} \lambda \frac{\partial } {{\partial x}}u_i = a_{i1} u_1 + a_{i2} u_2 + f_i , i = 1, 2, of Riemann-Liouville fractional partial differential equations with constant coefficients and prove theorems on the existence and uniqueness of a solution of a Cauchy problem in nonlocal statement.  相似文献   

13.
We consider semilinear partial differential equations in ℝ n of the form
$ \sum\limits_{\frac{{|\alpha |}} {m} + \frac{{|\beta |}} {k} \leqslant 1} {c_{\alpha \beta } x^\beta D_x^\alpha u = F(u)} , $ \sum\limits_{\frac{{|\alpha |}} {m} + \frac{{|\beta |}} {k} \leqslant 1} {c_{\alpha \beta } x^\beta D_x^\alpha u = F(u)} ,   相似文献   

14.
We study the rough bilinear fractional integral
$ \tilde B_{\Omega ,\alpha } (f,g)(x) = \int_{\mathbb{R}^n } {f(x + y)g(x - y)\frac{{\Omega (x,y')}} {{\left| y \right|^{n - \alpha } }}dy} , $ \tilde B_{\Omega ,\alpha } (f,g)(x) = \int_{\mathbb{R}^n } {f(x + y)g(x - y)\frac{{\Omega (x,y')}} {{\left| y \right|^{n - \alpha } }}dy} ,   相似文献   

15.
Let f(n) be a strongly additive complex-valued arithmetic function. Under mild conditions on f, we prove the following weighted strong law of large numbers: if X,X 1,X 2, … is any sequence of integrable i.i.d. random variables, then
$ \mathop {\lim }\limits_{N \to \infty } \frac{{\sum\nolimits_{n = 1}^N {f(n)X_n } }} {{\sum\nolimits_{n = 1}^N {f(n)} }} = \mathbb{E}Xa.s. $ \mathop {\lim }\limits_{N \to \infty } \frac{{\sum\nolimits_{n = 1}^N {f(n)X_n } }} {{\sum\nolimits_{n = 1}^N {f(n)} }} = \mathbb{E}Xa.s.   相似文献   

16.
Laguerre calculus is a powerful tool for harmonic analysis on the Heisenberg group. Many sub-elliptic partial differential operators can be inverted by Laguerre calculus. In this article, we use Laguerre calculus to find explicit kernels of the fundamental solution for the Paneitz operator and its heat equation. The Paneitz operator which plays an important role in CR geometry can be written as follows:
$ {\mathcal{P}_\alpha} = {\mathcal{L}_\alpha} \bar {\mathcal{L}_\alpha} = \frac{1} {4}\left[ {\sum\limits_{j = 1}^n {\left( {Z_j \bar Z_j + \bar Z_j Z_j } \right)} } \right]^2 + \alpha ^2 T^2 $ {\mathcal{P}_\alpha} = {\mathcal{L}_\alpha} \bar {\mathcal{L}_\alpha} = \frac{1} {4}\left[ {\sum\limits_{j = 1}^n {\left( {Z_j \bar Z_j + \bar Z_j Z_j } \right)} } \right]^2 + \alpha ^2 T^2   相似文献   

17.
In the “lost notebook”, Ramanujan recorded infinite product expansions for
$\frac{1} {{\sqrt r }} - \left( {\frac{{1 - \sqrt 5 }} {2}} \right)\sqrt r and \frac{1} {{\sqrt r }} - \left( {\frac{{1 + \sqrt 5 }} {2}} \right)\sqrt r ,$\frac{1} {{\sqrt r }} - \left( {\frac{{1 - \sqrt 5 }} {2}} \right)\sqrt r and \frac{1} {{\sqrt r }} - \left( {\frac{{1 + \sqrt 5 }} {2}} \right)\sqrt r ,  相似文献   

18.
Abstract In this paper, we investigate the positive solutions of strongly coupled nonlinear parabolic systems with nonlinear boundary conditions: {ut-a(u, v)△u=g(u, v), vt-b(u, v)△v=h(u, v), δu/δη=d(u, v), δu/δη=f(u, v).Under appropriate hypotheses on the functions a, b, g, h, d and f, we obtain that the solutions may exist globally or blow up in finite time by utilizing upper and lower solution techniques.  相似文献   

19.
We study the Γ-convergence of the following functional (p > 2)
$F_{\varepsilon}(u):=\varepsilon^{p-2}\int\limits_{\Omega} |Du|^p d(x,\partial \Omega)^{a}dx+\frac{1}{\varepsilon^{\frac{p-2}{p-1}}} \int\limits_{\Omega} W(u) d(x,\partial \Omega)^{-\frac{a}{p-1}}dx+\frac{1}{\sqrt{\varepsilon}} \int\limits_{\partial\Omega} V(Tu)d\mathcal{H}^2,$F_{\varepsilon}(u):=\varepsilon^{p-2}\int\limits_{\Omega} |Du|^p d(x,\partial \Omega)^{a}dx+\frac{1}{\varepsilon^{\frac{p-2}{p-1}}} \int\limits_{\Omega} W(u) d(x,\partial \Omega)^{-\frac{a}{p-1}}dx+\frac{1}{\sqrt{\varepsilon}} \int\limits_{\partial\Omega} V(Tu)d\mathcal{H}^2,  相似文献   

20.
In this paper, the author proves the existence and uniqueness of nonnegative solution for the first boundary value problem of uniform degenerated parabolic equation $$\[\left\{ {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial t}} = \sum {\frac{\partial }{{\partial {x_i}}}\left( {v(u){A_{ij}}(x,t,u)\frac{{\partial u}}{{\partial {x_j}}}} \right) + \sum {{B_i}(x,t,u)} \frac{{\partial u}}{{\partial {x_i}}}} + C(x,t,u)u\begin{array}{*{20}{c}} {}&{(x,t) \in [0,T]} \end{array},}\{u{|_{t = 0}} = {u_0}(x),x \in \Omega ,}\{u{|_{x \in \partial \Omega }} = \psi (s,t),0 \le t \le T} \end{array}} \right.\]$$ $$\[\left( {\frac{1}{\Lambda }{{\left| \alpha \right|}^2} \le \sum {{A_{ij}}{\alpha _i}{\alpha _j}} \le \Lambda {{\left| \alpha \right|}^2},\forall a \in {R^n},0 < \Lambda < \infty ,v(u) > 0\begin{array}{*{20}{c}} {and}&{v(u) \to 0\begin{array}{*{20}{c}} {as}&{u \to 0} \end{array}} \end{array}} \right)\]$$ under some very weak restrictions, i.e. $\[{A_{ij}}(x,t,r),{B_i}(x,t,r),C(x,t,r),\sum {\frac{{\partial {A_{ij}}}}{{\partial {x_j}}}} ,\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}} \in \overline \Omega } \times [0,T] \times R,\left| {{B_i}} \right| \le \Lambda ,\left| C \right| \le \Lambda ,\],\[\left| {\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}}} } \right| \le \Lambda ,\partial \Omega \in {C^2},v(r) \in C[0,\infty ).v(0) = 0,1 \le \frac{{rv(r)}}{{\int_0^r {v(s)ds} }} \le m,{u_0}(x) \in {C^2}(\overline \Omega ),\psi (s,t) \in {C^\beta }(\partial \Omega \times [0,T]),0 < \beta < 1\],\[{u_0}(s) = \psi (s,0).\]$  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号