首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
Tellurium was successfully incorporated into proteins and applied to protein structure determination through X-ray crystallography. However, studies on tellurium modification of DNA and RNA are limited. This review highlights the recent development of Te-modified nucleosides, nucleotides, and nucleic acids, and summarizes the main synthetic approaches for the preparation of 5-PhTe, 2′-MeTe, and 2′-PhTe modifications. Those modifications are compatible with solid-phase synthesis and stable during Te-oligonucleotide purification. Moreover, the ideal electronic and atomic properties of tellurium for generating clear isomorphous signals give Te-modified DNA and RNA great potential applications in 3D crystal structure determination through X-ray diffraction. STM study also shows that Te-modified DNA has strong topographic and current peaks, which immediately suggests potential applications in nucleic acid direct imaging, nanomaterials, molecular electronics, and diagnostics. Theoretical studies indicate the potential application of Te-modified nucleosides in cancer therapy.  相似文献   

2.
The conjugation of oligonucleotides with reporters is of great interest for improving their intrinsic properties or endowing new ones. In this context, we report herein a new procedure for the bis-labelling of oligonucleotides through oxime ligation (Click-O) and copper(I)-catalyzed alkyne–azide cycloaddition (Click-H). 5′-Azido and 3′-aldehyde precursors were incorporated into oligonucleotides, and subsequent coupling reactions through Click-O and Click-H (or vice versa) were successfully achieved. In particular, we exhaustively investigated the full compatibility of each required step for both tethering strategies. The results demonstrate that click Huisgen and click oxime reactions are fully compatible. However, whilst both approaches can deliver the targeted doubly conjugated oligonucleotide, the route involving click oxime ligation prior to click Huisgen is significantly more successful. Thus the reactions investigated here can be considered to be key elements of the chemical toolbox for the synthesis of highly sophisticated bioconjugates.  相似文献   

3.
The incorporation of metal ions into nucleic acids by means of metal‐mediated base pairs represents a promising and prominent strategy for the site‐specific decoration of these self‐assembling supramolecules with metal‐based functionality. Over the past 20 years, numerous nucleoside surrogates have been introduced in this respect, broadening the metal scope by providing perfectly tailored metal‐binding sites. More recently, artificial nucleosides derived from natural purine or pyrimidine bases have moved into the focus of AgI‐mediated base pairing, due to their expected compatibility with regular Watson–Crick base pairs. This minireview summarizes these advances in metal‐mediated base pairing but also includes further recent progress in the field. Moreover, it addresses other aspects of metal‐modified nucleic acids, highlighting an expansion of the concept to metal‐mediated base triples (in triple helices and three‐way junctions) and metal‐mediated base tetrads (in quadruplexes). For all types of metal‐modified nucleic acids, proposed or accomplished applications are briefly mentioned, too.  相似文献   

4.
Developing non-cationic gene carriers and achieving efficient endo/lysosome escape of functional nucleic acids in cytosol are two major challenges faced by the field of gene delivery. Herein, we demonstrate the concept of self-escape spherical nucleic acid (SNA) to achieve light controlled non-cationic gene delivery with sufficient endo/lysosome escape capacity. In this system, Bcl-2 antisense oligonucleotides (OSAs) were conjugated onto the surface of aggregation-induced emission (AIE) photosensitizer (PS) nanoparticles to form core–shell SNA. Once the SNAs were taken up by tumor cells, and upon light irradiation, the accumulative 1O2 produced by the AIE PSs ruptured the lysosome structure to promote OSA escape. Prominent in vitro and in vivo results revealed that the AIE-based core–shell SNA could downregulate the anti-apoptosis protein (Bcl-2) and induce tumor cell apoptosis without any transfection reagent.  相似文献   

5.
Partial molar volumes of cytosine, uracil, thymine, cytidine, uridine, thymidine, and adenosine have been measured in different concentrations of aqueous ethanol, 1,2-ethanediol, 2-propanol, and 2-methyl-2-propanol at 25°C using densimetry. These data are utilized in conjunction with the partial molar volumes of these nucleic acid bases and nucleosides in water reported earlier to deduce the partial molar volumes of transfer from water to aqueous alcohol or diol. The results are explained in terms of likely solute–solvent interactions; the role of solvent in these interactions is discussed. The partial molar volume data are also used to calculate the contribution of –CH2- groups in the nucleic acid base or solvent and of ribose in the nucleoside to the partial molar volume of transfer. The validity of group additivity in these systems is discussed.  相似文献   

6.
Polystyrene-supported 2-azidoethyl phenyl selenide and 3-azidopropyl phenyl selenide reagents have been developed and applied to the traceless solid-phase organic synthesis of 1-vinyl- and 1-allyl-1,2,3-triazoles by CuI-mediated azide–alkyne cycloadditions and subsequent cleavage from the polymer support through oxidation–elimination reaction with 30% hydrogen peroxide. The advantages of this method include straightforward operation, good yield and purity of the products, and good stability and lack of odor for the reagents.  相似文献   

7.
The s mall heterocyclic ring of the 1,2,3‐triazole module is one of the most widely investigated compounds in numerous applications of biological, medicinal, pharmaceutical and materially important molecules. In this regard, a large number of synthetic methodologies and approaches have already been reported to construct such a heterocyclic core structure in a selective manner. However, the vinyl‐substituted 1,2,3‐triazole moiety is another privileged segment in heterocyclic chemistry. The selective introduction of simple vinyl and functionalized vinyl groups onto the three different positions of the 1,2,3‐triazole framework can significantly improve the properties of the molecule. Accordingly, high‐yielding efficient approaches for the selective construction of vinyl‐containing 1,2,3‐triazoles becomes a promising branch of chemistry among practitioners of industry and academia. In this minireview, we have discussed recent advances in the construction of highly selective three different vinyl‐containing 1,2,3‐triazoles. In addition, representative synthetic methodologies and approaches for the corresponding three different classes of vinyl‐1,2,3‐triazoles and their applications have been described as well in this review.  相似文献   

8.
Highly regiospecific, copper-salt-free and neat conditions have been demonstrated for the 1,3-dipolar azide-alkyne cycloaddition (AAC) reactions under mechanochemical conditions. A group of structurally challenging alkynes and heterocyclic derivatives was efficiently implemented to achieve highly functionalized 1,4-disubstituted-1,2,3-triazoles in good to excellent yield by using the Cu beads without generation of unwanted byproducts. Furthermore, the high-speed ball milling (HSBM) strategy has also been extended to the synthesis of the commercially available pharmaceutical agent, Rufinamide, an antiepileptic drug (AED) and its analogues. The same strategy was also applied for the synthesis of the Cl-derivative of Rufinamide. Analysis of the single crystal XRD data of the triazole was also performed for the final structural confirmation. The Cu beads are easily recoverable from the reaction mixture and used for the further reactions without any special treatment.  相似文献   

9.
Benzothiophene, benzofuran, indole, and indene derivatives are privileged heterocyclic motifs. These are present in a wide range of bioactive natural products and pharmaceutical drugs and are the subject of materials science research. However, the construction of benzothiophene, benzofuran, indole, and indene frameworks have been long‐standing challenges to organic chemists. In this review, we classify the derivatives of four structures synthesized from 2‐benzylidene‐1‐benzofuran‐3‐one and their analogues in terms of their ring size (from three‐ to ten‐membered) and type (fused or spiro), as well as summarizing the developments of this field. Finally, we discuss the ring opening and 1,4‐addition reactions.  相似文献   

10.
将可重复使用的CuO纳米粒子成功用于催化微波辅助的腈和NaN3[3+2]环加成反应高效合成5-取代1H-四唑类化合物.该法突出特点为成本低、合成快、稳定性高、可重复使用、反应条件温和、无需任何添加物、官能团兼容性好和产率高.这种环境友好的微波辅助纳米粒子催化合成策略可望替代现有的涉及常规路易斯酸催化剂方法,以及作为一种简易的合成特殊化合物的方法.  相似文献   

11.
The condensation of β-phenylpyruvic acid with amides gave olefinic intermediates in good yields (75-80%). The asymmetric catalytic hydrogenation of α-acetamidocinnamic acid with high enantioselectivity is described.  相似文献   

12.
Based on the Warburg effect and the increased demand for glucose by tumor cells, a targeted drug delivery strategy was developed. A series of new glycoconjugates with increased ability to interact with GLUT transporters, responsible for the transport of sugars to cancer cells, were synthesized. Glycoconjugation was performed using the C-6 position in the sugar unit, as the least involved in the formation of hydrogen bonds with various aminoacids residues of the transporter. The carbohydrate moiety was connected with the 8-hydroxyquinoline scaffold via a 1,2,3-triazole linker. For the obtained compounds, several in vitro biological tests were performed using HCT-116 and MCF-7 cancer cells as well as NHDF-Neo healthy cells. The highest cytotoxicity of both cancer cell lines in the MTT test was noted for glycoconjugates in which the triazole-quinoline was attached through the triazole nitrogen atom to the d-glucose unit directly to the carbon at the C-6 position. These compounds were more selective than the analogous glycoconjugates formed by the C-1 anomeric position of d-glucose. Experiments with an EDG inhibitor have shown that GLUTs can be involved in the transport of glycoconjugates. The results of apoptosis and cell cycle analyses by flow cytometry confirmed that the new type of glycoconjugates shows pro-apoptotic properties, without significantly affecting changes in the distribution of the cell cycle. Moreover, glycoconjugates were able to decrease the clonogenic potential of cancer cells, inhibit the migration capacity of cells and intercalate with DNA.  相似文献   

13.
Taking advantageous of both g‐C3N4 and magnetic core‐shell hollow spheres, for the first time a heterogeneous and magnetically separable hybrid system was prepared through a novel and simple hydrothermal procedure and used for immobilization of bio‐synthesized Ag(0) nanoparticles. The hybrid system was fully characterized by using SEM/EDS, FTIR, VSM, TEM, XRD, TGA, DTGA, ICP‐AES, BET and elemental mapping analysis. The catalytic utility of the obtained system, h‐Fe2O3@SiO2/g‐C3N4/Ag, for promoting ultrasonic‐assisted A3, KA2 coupling reactions and [3 + 2] cycloaddition has been confirmed. The results established that the catalyst could efficiently catalyze the reaction to afford the corresponding products in high yields in short reaction times. The reusability study confirmed that the catalyst could be recovered and reused for at least five reaction runs with only slight loss of the catalytic activity. The hot filtration test also proved low silver leaching, indicating the heterogeneous nature of the catalysis.  相似文献   

14.
We report here a simple and universal synthetic pathway covering triple click reactions, Diels–Alder, copper‐catalyzed azide–alkyne cycloaddition (CuAAC), and nitroxide radical coupling (NRC), to prepare well‐defined graft copolymers with V‐shaped side chains. The Diels–Alder click reaction between the furan protected‐maleimide‐terminated poly(ethylene glycol) (PEG) and a trifunctional core ( 1 ) carrying an anthracene, alkyne, and bromide was carried out to yield the corresponding α‐alkyne‐ and α‐bromide‐terminated PEG (PEG‐alkyne/Br) in toluene at 110 °C. Subsequently, the polystyrene or polyoxanorbornene with pendant azide functionality as a main backbone is reacted with the PEG‐alkyne/Br and 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO)‐terminated poly(ε‐caprolactone) using the CuAAC and NRC reactions in a one‐pot fashion in N,N′‐dimethylformamide at room temperature to result in the target V‐shaped graft copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4667–4674  相似文献   

15.
Melamine trisulfonic acid(MTSA) can be used as an efficient and recyclable catalyst for the promotion of the synthesis of 3,4- dihydropyrimidin-2(1H)-ones/thiones(DHPMs) in the absence of solvent.All reactions were performed at 80℃in good to high yields.  相似文献   

16.
As promising molecular probes for in vivo tumor imaging, aptamers without modification remain problematic due to insufficient serum stability and unabiding imaging window. To address this problem, a novel locked nucleic acid (LNA)/DNA chimeric aptamer probe was developed through proper LNA incorporation and supplemented 3′-3′-thymidine (3′-3′-T) capping. TD05, a DNA aptamer against lymphoma Ramos cells, being used as the model, a series of modification strategies were designed and optimized with different positions, numbers and combinations. It was revealed that the combined use of LNA and 3′-3′-T had a synergistic effect, and with the increase of LNA substitution in stem region, the serum stability of TD05 was gradually enhanced while its affinity and specificity were perfectly maintained to Ramos cells. Particularly, TD05.6 with 7-base pair-LNA substitution exhibited the significantly elevated detection stability half-life from ∼0.5 h of TD05 to 5–6 h of TD05.6 for target cells in serum. Moreover, a much slower clearance rate in tumor-bearing mice was also observed for TD05.6, thus leading to the greatly extended tumor imaging window from <150 min of TD05 to >600 min of TD05.6. This strategy might be of great potentials to generate more aptamer probes that are stable and nuclease-resistant for tumor diagnosis in real biological systems.  相似文献   

17.
Three crystal complexes were designed and synthesised through the solvothermal method, with Cu2+, Zn2+, and Cd2+ ions as the metal centres and 2,4,6‐tri(2‐pyridyl)‐s‐triazine (TPTZ) and terephthalate (BDC2−) as the ligands. Their compositions were determined to be Cd(TPTZ)Cl2 (Cd‐MOF), {[Zn(TPTZ)(BDC)] ⋅ 3H2O}n (Zn‐MOF), and Cu2(PCA)2(BDC)(H2O)2 (Cu‐MOF) (PCA=2‐pyridinium amide), respectively. Cd‐MOF can adsorb 90 % of Congo red (CR) in 10 s at room temperature and atmospheric pressure, and CR removal was complete at 20 s over a wide pH range. The adsorption capacity for CR reached 1440 mg g−1 in 5 min. Selective adsorption was demonstrated in mixed dyes. The adsorption kinetic data agree well with the pseudo‐second‐order kinetic model. The Temkin model was successfully used to evaluate the adsorption isotherms of CR on Cd‐MOF at room temperature, suggesting that adsorption occurs through a hybrid of monolayer and multilayer mechanisms.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号