首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The kinetics of radical telomerization of VDF at 141 °C, initiated by ditertbutylperoxide, in the presence of three chain transfer agents (CTAs), HCCl3, CCl4 and CCl3Br, are presented. The values of the chain transfer constants were assessed as 35, 0.25 and 0.06 at 141 °C for CCl3Br, CCl4 and HCCl3, respectively. The values of the degree of polymerization (DPn) were obtained for each CTA and were compared for the same CTA concentration. Hence, CCl3Br behaved as an efficient CTA towards VDF and usually afforded the monoadduct selectively, but in certain conditions the VDF diadduct can also be produced. In contrast, HCCl3 was not so efficient since a polymeric structure was identified as the major product.  相似文献   

2.
The synthesis and the radical copolymerisation of 2-hydroperfluorooct-1-ene (HPO) with vinylidene fluoride (VDF), initiated by tertio-butyl peroxypivalate (TBPPI) at 75 °C, are presented. That fluorinated alkene (HPO) was synthesised in two steps starting from the thermal or redox telomerisation of VDF with C6F13I (after purification of the monoadduct compound by rectification) followed by a dehydroiodination in the presence of various alkalies. Their influences are discussed toward the yield of the reaction. The compositions of the resulting random-type copolymers were calculated by means of 19F NMR spectroscopy and allowed one to quantify the respective amounts of each monomeric unit in the copolymer. From the Tidwell and Mortimer method, the reactivity ratios (ri) of both comonomers for this copolymerisation were determined showing a higher incorporation of VDF: rVDF = 12.0 ± 3.0 and rF2CCHC6F13=0.9±0.4 at 74 °C.  相似文献   

3.
The synthesis of a novel aromatic sulfonic acid bearing an amino function H2N? C2H4? S? C2H4? C6H4? SO3Na ( 1 ) from the radical addition of mercaptoethylamine hydrochloride onto styrene sodium sulfonate, and its subsequent grafting onto poly(vinylidene fluoride‐co‐hexafluoropropylene), poly(VDF‐co‐HFP), copolymer are presented. First, the radical telomerization, carried out under radical conditions and in water, led to various products [monoadduct ( 1 ), multiadducts, and polymers], the amounts of which depend on the experimental conditions and [mercaptan]0/[monomer]0 initial molar ratio (R0). An R0 ≥ 1 led to the monoadduct ( 1 ) only and achieved in ~85% yield. The zwitterionic isomer was obtained mainly and its chemical modification was possible to get an original aromatic sodium sulfonate containing an amino end group. A kinetic study of the telomerization was presented for R0 < 1. Thermogravimetric analysis of the telomer showed that this compound was stable up to 200 °C. Second, the grafting of ( 1 ) onto poly(VDF‐co‐HFP) copolymer was also investigated. Such a grafting proceeded as expected by a classic mechanism of grafting of amines. Molar percentages of grafted telomer were assessed by 1H NMR spectroscopy and by elemental analysis. Ion exchange capacity (IEC) values of the membranes were deduced from the mol % grafted telomer. Scanning electron microscopy pictures showed a good homogeneity in the cross‐section of membranes, and energy dispersive X‐ray evidenced that all SO3Na groups of the grafted amine were changed into SO3H after treatment with concentrated HCl. Method involving an impedance analyzer, working at increasing high frequencies was used to assess the protonic conductivities, σ. These values were lower than that of Nafion117®, but σ increased with the IEC to 0.4 mS/cm at room temperature and 95% relative humidity. Water and methanol uptakes were also assessed, and it was shown that σ increased when water uptakes increased. Membranes started to decompose from 170 °C under air. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 121–136, 2009  相似文献   

4.
The mass spectra of the dissociative electron-impact ionization products of telomers formed upon the radiation-chemical telomerization of tetrafluoroethylene in acetone were measured over the range of m/z from 1 to 204. The most intense bands at m/z = 43, 51, and 57 were attributed to the CH3CO+, CF2H+ and CH3COCH2+ cations—the main dissociation products of the H(C2F4) n CH2COCH3 telomers. The telomer composition was consistent with a radical telomerization mechanism, in which chain growth and chain transfer are due to the formation of the CH3COCH2· radical. Based on published data supplemented with quantum-chemical calculations, the enthalpies of formation of the radicals R(CF2) n (n = 2–8; R = H, CH3, CH3CO, and CH3COCH2) were tabulated. The formation of telomers with the same terminal groups is consistent with thermodynamic data and a polymerization mechanism in which the chain growth reaction is diffusion-limited and the chain transfer reaction is activated hydrogen-atom transfer.  相似文献   

5.
Block copolymers based on poly(vinylidene fluoride), PVDF, and a series of poly(aromatic sulfonate) sequences were synthesized from controlled radical polymerizations (CRPs). According to the aromatic monomers, appropriate techniques of CRP were chosen: either iodine transfer polymerization (ITP) or atom transfer radical polymerization (ATRP) from PVDF‐I macromolecular chain transfer agents (CTAs) or PVDF‐CCl3 macroinitiator, respectively. These precursors were produced either by ITP of VDF with C6F13I or by radical telomerization of VDF with chloroform, respectively. Poly(vinylidene fluoride)‐b‐poly(sodium styrene sulfonate), PVDF‐b‐PSSS, block copolymers were produced from both techniques via a direct polymerization of sodium styrene sulfonate (SSS) monomer or an indirect way with the use of styrene sulfonate ethyl ester (SSE) as a protected monomer. Although the reaction led to block copolymers, the kinetics of ITP of SSS showed that PVDF‐I macromolecular CTAs were not totally efficient because a limitation of the CTA consumption (56%) was observed. This was probably explained by both the low activity of the CTA (that contained inefficient PVDF‐CF2CH2? I) and a fast propagation rate of the monomer. That behavior was also noted in the ITP of SSE. On the other hand, ATRP of SSS initiated by PVDF‐CCl3 was more controlled up to 50% of conversion leading to PVDF‐b‐PSSS block copolymer with an average number molar mass of 6000 g·mol?1. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Reaction of hexafluoropropene (HFP) with a series of alcohols under thermal, photochemical or peroxide-initiated conditions affords the 1:1 adducts CF3CHFCF2CR1R2OH (R1 = H, R2 = H, Me, Prn or CF3; R1 = Me, R2 = Me or Et) in high yield via a radical chain mechanism. Adduct are not formed with the alcohols (CF3)2CHOH and CF3CHFCF2CH2OH. Other 1:1 adducts of structure CHF2CF(CF3)CH2OH and CH3(C2H3CF2CHFCF3)CH2OH are formed as minor products in the methanol and n-butanol reactions, respectively.  相似文献   

7.
A bimolecular rate constant,kDHO, of (29 ± 9) × 10?12 cm3 molecule?1 s?1 was measured using the relative rate technique for the reaction of the hydroxyl radical (OH) with 3,5‐dimethyl‐1‐hexyn‐3‐ol (DHO, HC?CC(OH)(CH3)CH2CH(CH3)2) at (297 ± 3) K and 1 atm total pressure. To more clearly define DHO's indoor environment degradation mechanism, the products of the DHO + OH reaction were also investigated. The positively identified DHO/OH reaction products were acetone ((CH3)2C?O), 3‐butyne‐2‐one (3B2O, HC?CC(?O)(CH3)), 2‐methyl‐propanal (2MP, H(O?)CCH(CH3)2), 4‐methyl‐2‐pentanone (MIBK, CH3C(?O)CH2CH(CH3)2), ethanedial (GLY, HC(?O)C(?O)H), 2‐oxopropanal (MGLY, CH3C(?O)C(?O)H), and 2,3‐butanedione (23BD, CH3C(?O)C(?O)CH3). The yields of 3B2O and MIBK from the DHO/OH reaction were (8.4 ± 0.3) and (26 ± 2)%, respectively. The use of derivatizing agents O‐(2,3,4,5,6‐pentalfluorobenzyl)hydroxylamine (PFBHA) and N,O‐bis(trimethylsilyl)trifluoroacetamide (BSTFA) clearly indicated that several other reaction products were formed. The elucidation of these other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible DHO/OH reaction mechanisms based on previously published volatile organic compound/OH gas‐phase reaction mechanisms. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 534–544, 2004  相似文献   

8.
This minireview updates non-exhaustive recent strategies of synthesis of original fluorosurfactants potentially non-bioaccumulable. Various strategies have been focused on (i) the preparation of CF3–X–(CH2)n–SO3Na (with X = O, C6H4O or N(CF3) and n = 8–12), (ii) the oligomerization of hexafluoropropylene oxide (HFPO) to further synthesize oligo(HFPO)–CF(CF3)CO–RH (where RH stands for an hydrophilic chain); (iii) the telomerization of vinylidene fluoride (VDF) with 1-iodopentafluoroethane or 1-iodononafluorobutane to produce CnF2n+1–(VDF)2–CH2CO2R (n = 2 or 4, R = H or NH4), (iv) the radical telomerization of 3,3,3-trifluoropropene (TFP) with isoperfluoropropyliodide or diethyl hydrogenophosphonate to prepare (CF3)2CF(TFP)x–RH or CF3–CH2–CH2–(TFP)y–P(O)(OH)2, and (v) the radical cotelomerization of VDF and TFP, or their controlled radical copolymerization in the presence of (CF3)2CFI or a fluorinated xanthate. In most cases, the surface tensions versus the surfactant concentrations have been assessed. These above strategies led to various highly fluorinated (but yet not perfluorinated) telomers whose chemical changes enabled to obtain original surfactants as novel alternatives to perfluorooctanoic acid (PFOA), ammonium perfluorooctanoate (APFO), or perfluorooctylsulfonic acid (PFOS) regarded as bioaccumulable, persistent, and toxic.  相似文献   

9.
The synthesis of original fluorinated (co)telomers containing vinylidene fluoride (VDF) or VDF and hexafluoropropene (HFP) was achieved by radical telomerizations and (co)telomerizations of VDF (or VDF and HFP) in the presence of 1, 6‐diiodoperfluorohexane via a semisuspension process. tert‐Butyl peroxypivalate (TBPPi) was used as an efficient thermal initiator. The numbers of VDF and VDF/HFP base units in the (co)telomers were determined by 19F and 1H NMR spectroscopy. They ranged from 10 to 190 VDF base units. Fluorinated telomers of various molecular weights (1200–12,600 g/mol) were obtained by the alteration of the initial [1,6‐diiodoperfluorohexane]0/[fluoroalkenes]0 and [TBPPi]0/[fluoroalkenes]0 molar ratios. The thermal properties of these fluorinated (co)telomers, such as the glass‐transition temperature and melting temperature, were examined. As expected, these telomers exhibited good thermal stability. They were stable at least up to 350 °C. The compounds containing more than 30 VDF units were crystalline, whereas all those containing VDF‐co‐HFP were amorphous with elastomeric properties, whatever the number was of the fluorinated base units. The structures of I–(VDF)n–RF–(VDF)m–I and I–(HFP)x(VDF)n–RF–(VDF)m(HFP)y–I (co)telomers were obtained, and the defects of the VDF chain and the ? CH2CF2I and ? CF2CH2I functionalities were studied successfully (where RF = C6F12). The functionality in the iodine atoms was modified: the higher the VDF content in the telomers, the lower the normal end functionality (? CH2CF2I) and the higher the reversed extremity (? CF2CH2I). In addition, the percentage of defects increased when the number of VDF units increased. The molecular weights and molecular weight distributions of different telomers and cotelomers were also studied. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1470–1485, 2006  相似文献   

10.
Abstract —On photoexcitation, hydroxyacetone undergoes a Norrish-type-1 fragmentation to yield CH3CO and CH2OH. CH2OH is identified by its EPR spectrum. The existence of CH3CO is inferred from the presence of diacetyl and acetaldehyde in irradiated solutions. Above pH 5, in addition to CH2OH, the cis and trans forms of the hydroxyacetone enediol radical anion, CH3C(O-)=C(O***)H, are detected. 1.3-Dihydroxyacetone is photodecomposed to HOCH2C?O and C?H2OH. The former radical decarbonylates to yield CH2OH and CO. At 254 nm the overall quantum yield of CO production is 0.75. Above pH 5, in addition to CH2OH, the cis and trans forms of the 1.3-dihydroxyacetone enediol radical anion, HOCH2C(O-)C(O***)H, are observed. Electronically excited hydroxyacetone and 1.3-dihydroxyacetone react exclusively by C-C fragmentation, and no H-abstraction from H-donors is observed. In contrast, electronically excited 1.3-dicarboxyacetone shows H-abstraction from H-donors in competition with C-C fragmentation. In the absence of H-donors, fragmentation resulting in CH2CO2- and -O2CCH2C?O occurs followed by decarbonylation of -O2H2C?O. At 254 nm the quantum yield of CO production is 0.02. In the presence of H-donors, H-abstraction, yielding HO2CCH2C(OH)CH2CO2, predominates.  相似文献   

11.
A 4 K matrix ESR study shows that the molecular radical cations of isopropyl formate and acetate, produced radiolytically in halocarbon matrices at 4.2 K, undergo spontaneous rearrangement due to a selective intramolecular hydrogen shift from the tertiary CH bond in the isopropyl group to the carbonyl oxygen atom giving RC+(OH)OC(CH3)2, where R = H or CH3. The radical cation of tert-butyl acetate undergoes further fragmentation at the ester CO bond following a similar rearrangement to give an isobutene radical cation in CFCl3.  相似文献   

12.
By combining results from a variety of mass spectrometric techniques (metastatle ion, collisional activation, collision-induced dissociative ionization, neutralization–reionization spectrometry and appearance energy measurements) and the classical method of isotopic labelling, a unified mechanism is proposed for the complex unimolecular chemistry of ionized 1,2-propanediol. The key intermediates involved are the stable hydrogen-bridged radical cations [CH2?C(H)? H…?O…?O(H)CH3]+˙, which were generated independently from [4-methoxy, 1-butanol]+˙ (loss of C2H4) and [1-methoxyglycerol]+˙ (loss of CH2O), [CH3? C?O…?H…?O(H)CH3]+˙ and the related ion-dipole complex [CH2?C(OH)CH3/H2O]+˙. The latter species serves as the precursor for the loss of CH3˙ and in this reaction the same non-ergodic behaviour is observed as in the loss of CH3˙ from the ionized enol of acetone.  相似文献   

13.
We have investigated the photoinduced decomposition of formaldehyde (CH2O) on a rutile TiO2(100)-(1×1) surface at 355 nm using temperature-programmed desorption. Products, formate (HCOO-), methyl radical (CH3·), ethylene (C2H4), and methanol (CH3OH) have been detected. The initial step in the decomposition of CH2O on the rutile TiO2(100)-(1×1) surface is the formation of a dioxymethylene intermediate in which the carbonyl O atom of CH2O is bound to a Ti atom at the five-fold-coordinated Ti4+ (Ti5c) site and its carbonyl C atom bound to a nearby bridge-bonded oxygen (Ob) atom, respectively. During 355 nm irradiation, the dioxymethylene intermediate can transfer an H atom to the Ob atom, thus forming HCOO- directly, which is considered as the main reaction channel. In addition, the dioxymethylene intermediate can also transfer methylene to the Ob row and break the C-O bond, thus leaving the original carbonyl O atom at the Ti5c site. After the transfer of methylene, several pathways to products are available. Thus, we have found that Ob atoms are intimately involved in the photoinduced decomposition of CH2O on the rutile TiO2(100)-(1×1) surface.  相似文献   

14.
The gas-phase isomerisation reaction of glutamine radical cation from [NH2CH (CH2CH2CONH2) COOH ]+• to [ NH2C (CH2CH2CONH2) C (OH)2]+• has been studied theoretically using the MPWB1K functional approach. The [ NH2 C (CH2CH2CONH2) C (OH)2]+• diol species has been found to be the most stable isomer for glutamine radical cation. Moreover, it has been observed that glutamine has a long enough side-chain with basic groups that acts as a solvent molecule favouring the proton-transfer from C α to COOH group. This fact reduces dramatically the isomerisation energy barriers compared to the same process for glycine radical cation in gas phase. Thus, this reaction can be considered as an example of gas-phase proton-transport catalysed reaction in which the proton-transport is carried out by the reactant molecule itself instead of any solvent. Contribution to the Serafin Fraga Memorial Issue.  相似文献   

15.
The rate constant of the title reaction is determined during thermal decomposition of di-n-pentyl peroxide C5H11O( )OC5H11 in oxygen over the temperature range 463–523 K. The pyrolysis of di-n-pentyl peroxide in O2/N2 mixtures is studied at atmospheric pressure in passivated quartz vessels. The reaction products are sampled through a micro-probe, collected on a liquid-nitrogen trap and solubilized in liquid acetonitrile. Analysis of the main compound, peroxide C5H10O3, was carried out by GC/MS, GC/MS/MS [electron impact EI and NH3 chemical ionization CI conditions]. After micro-preparative GC separation of this peroxide, the structure of two cyclic isomers (3S*,6S*)3α-hydroxy-6-methyl-1,2-dioxane and (3R*,6S*)3α-hydroxy-6-methyl-1,2-dioxane was determined from 1H NMR spectra. The hydroperoxy-pentanal OHC( )(CH2)2( )CH(OOH)( )CH3 is formed in the gas phase and is in equilibrium with these two cyclic epimers, which are predominant in the liquid phase at room temperature. This peroxide is produced by successive reactions of the n-pentoxy radical: a first one generates the CH3C·H(CH2)3OH radical which reacts with O2 to form CH3CH(OO·)(CH2)3OH; this hydroxyperoxy radical isomerizes and forms the hydroperoxy HOC·H(CH2)2CH(OOH)CH3 radical. This last species leads to the pentanal-hydroperoxide (also called oxo-hydroperoxide, or carbonyl-hydroperoxide, or hydroperoxypentanal), by the reaction HOC·H(CH2)2CH(OOH)CH3+O2→O()CH(CH2)2CH(OOH)CH3+HO2. The isomerization rate constant HOCH2CH2CH2CH(OO·)CH3→HOC·HCH2CH2CH(OOH)CH3 (k3) has been determined by comparison to the competing well-known reaction RO2+NO→RO+NO2 (k7). By adding small amounts of NO (0–1.6×1015 molecules cm−3) to the di-n-pentyl peroxide/O2/N2 mixtures, the pentanal-hydroperoxide concentration was decreased, due to the consumption of RO2 radicals by reaction (7). The pentanal-hydroperoxide concentration was measured vs. NO concentration at ten temperatures (463–523 K). The isomerization rate constant involving the H atoms of the CH2( )OH group was deduced: or per H atom: The comparison of this rate constant to thermokinetics estimations leads to the conclusion that the strain energy barrier of a seven-member ring transition state is low and near that of a six-member ring. Intramolecular hydroperoxy isomerization reactions produce carbonyl-hydroperoxides which (through atmospheric decomposition) increase concentration of radicals and consequently increase atmospheric pollution, especially tropospheric ozone, during summer anticyclonic periods. Therefore, hydrocarbons used in summer should contain only short chains (<C4) hydrocarbons or totally branched hydrocarbons, for which isomerization reactions are unlikely. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 875–887, 1998  相似文献   

16.
A new tetrafunctional initiator, di(hydroxyethyl)‐2,9‐dibromosebacate (DHEDBS) [HOCH2CH2OOCCHBr(CH2)6CHBrCOOCH2CH2OH], was synthesized and used in preparation of A2B2 miktoarm star copolymers, (polystyrene)2/ [poly(1,3‐dioxepane)]2 [S‐(PSt)2(PDOP)2], by transformation of atom transfer radical polymerization (ATRP) to cationic ring‐opening polymerization (CROP). First, two‐armed PSt with two primary hydroxyl groups sited at the center of macromolecule [(PStBr)2(OH)2] was obtained by ATRP of St with the initiation system of DHEDBS/CuBr/bpy, and used as a chain‐transfer agent in the CROP of DOP with triflic acid as the initiator. Therefore, A2B2 miktoarm star copolymer S‐(PSt)2(PDOP)2 was formed. Its structure was confirmed by the 1H NMR spectrum. Gel permeation chromatography (GPC) curves show that the polymers obtained have a relatively narrow molecular weight distribution. The hydrolysis product of S‐(PSt)2(PDOP)2 was also characterized by 1H NMR and GPC. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 437–445, 2001  相似文献   

17.
Radical cations derived from the ethers ROCH2CH2OR′ (R, R′ = H, CH3, C25) were studied, since β-distonic oxonium ions are often prepared from ionized ethers of glycol. The first step in the fragmentation is a 1,5-transfer of an α-hydrogen to oxygen of a terminal alkoxy group leading to a δ-distonic oxonium ion. This step is thermo-neutral and reversible in the ROCH2CH2OH radical cations and exothermic and irreversible in the dialkyl ether radical cations. Depending on R and R,′ these δ-distonic oxonium ions fragment by three reactions: the loss of an alcohol or a water molecule, the formation of a β-distonic oxonium ion ˙CH2CH2O(H)+R and a 1,4-H migration between carbon atoms. Competition between these processes is discussed.  相似文献   

18.
The relative rate technique has been used to measure the hydroxyl radical (OH) reaction rate constant of +2-butanol (2BU, CH3CH2CH(OH)CH3) and 2-pentanol (2PE, CH3CH2CH2CH(OH)CH3). 2BU and 2PE react with OH yielding bimolecular rate constants of (8.1±2.0)×10−12 cm3molecule−1s−1 and (11.9±3.0)×10−12 cm3molecule−1s−1, respectively, at 297±3 K and 1 atmosphere total pressure. Both 2BU and 2PE OH rate constants reported here are in agreement with previously reported values [1–4]. In order to more clearly define these alcohols' atmospheric reaction mechanisms, an investigation into the OH+alcohol reaction products was also conducted. The OH+2BU reaction products and yields observed were: methyl ethyl ketone (MEK, (60±2)%, CH3CH2C((DOUBLEBOND)O)CH3) and acetaldehyde ((29±4)% HC((DOUBLEBOND)O)CH3). The OH+2PE reaction products and yields observed were: 2-pentanone (2PO, (41±4)%, CH3C((DOUBLEBOND)O)CH2CH2CH3), propionaldehyde ((14±2)% HC((DOUBLEBOND)O)CH2CH3), and acetaldehyde ((40±4)%, HC((DOUBLEBOND)O)CH3). The alcohols' reaction mechanisms are discussed in light of current understanding of oxygenated hydrocarbon atmospheric chemistry. Labeled (18O) 2BU/OH reactions were conducted to investigate 2BU's atmospheric transformation mechanism details. The findings reported here can be related to other structurally similar alcohols and may impact regulatory tools such as ground level ozone-forming potential calculations (incremental reactivity) [5]. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 745–752, 1998  相似文献   

19.
A persistent perfluoroalkyl radical (PPFR), perfluoro‐3‐ethyl‐2,4‐dimethyl‐3‐pentyl, is shown to be a good source of •CF3 radicals and a useful radical capable of initiating the polymerization of vinylidene fluoride (VDF). NMR characterizations of the resulting PVDF homopolymers showed that polymerization of VDF was exclusively initiated by •CF3 radicals. The addition of •CF3 radical onto VDF was regioselective leading to CF3‐CH2‐CF2‐PVDF and the CF3 end‐group acted as an efficient label to assess the molecular weights by 19F NMR spectroscopy. Various [PPFR]0/[VDF]0 initial molar ratios lead to CF3–PVDF–CF3 of different molecular weights. When that ratio decreased, both the molecular weights and the thermostability of these PVDFs increased, showing less defects of chaining and higher crystallinity.  相似文献   

20.
Carnitine inner salt, (CH3)3N+ CH2CH(OH)CH2COO?, and carnitine hydrochloride, (CH3)3N+CH2CH (OH)CH2COOH Cl?, in the solid state undergo ion-beam-induced intermolecular methyl transfer reactions as shown by (CH3)3N+ CH2CH(OH)CH2COOCH3 ions at m/z 176 in their positive ion spectra. In the case of carnitine HCl, the product ion is three times as abundant as the intact cation. For the inner salt however, the product is less than one-tenth as abundant as [M + H] +. In both cases, the reaction can be precluded by dissolution of the sample, supporting an intermolecular mechanism. The negative ion spectra for these compounds contain no [M ? CH3]? ions, suggesting that simple transmethylation does not occur. Rather it is proposed that the inner salt abstracts a methyl group from the intact carnitine cation to yield [M + CH3]+ and a neutral species, the driving force being a minimization of the total number of charges desorbed into the gas phase. Thermodynamic data favor this mechanism as do data for other carnitine salts. The reaction appears to be inhibited when one reactant is present in excess. This is the case for carnitine HNO3 and CH3SO3H, which tend to liberate the intact cation since the anions are large and polarizable. It is also the case for small, hard anions like fluoride, which appear to favor release of the inner salt, hence the cation at m/z 162 is of low abundance and the transmethylation product (m/z 176) is absent. The extent of the reaction is also dependent on the methods of preparation of the sample, and deposition of the salts from solution greatly reduces the extent of methyl transfer. [M ? CH3]? is observed when glycerol is used as a matrix, possibly due to a matrix-analyte methyl transfer reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号