首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
For the HLS-bunch current measurement system,in order to obtain the absolute value of bunch current,the calibration factor should be determined by using DCCT.At the HLS storage ring,the stretch efect of bunch length is observed and the change rate is about 19% when the bunch current decays over time and this will afect the performance of bunch current detection.To overcome the bunch stretch influence in the HLS-bunch current measurement,an evaluation about pickup type and signal processing is carried out.Strip-line pickup and button pickup are selectable,and the theoretical analysis and demonstration experiment are performed to find out an acceptable solution for the bunch current measurement system at HLS-.The experimental data analysis shows that the normalized calibration factor will change by about 27% when the bunch length changes by about 19% if using the button pickup and processing by peak value of bunch signal;the influence will be reduced to 2% less if adopting the strip-line pickup and integral.  相似文献   

2.
BEPCⅡ is an electron-positron collider designed to run under multi-bunches and high beam current condition. The accelerator consists of an electron ring, a positron ring and a linear injector. In order to achieve the target luminosity and implement the equal bunch charge injection, the Bunch Current Monitor (BCM) system is built on BEPCⅡ. The BCM system consists of three parts: the front-end circuit, the bunch current acquisition system and the bucket selection system. The control software of BCM is based on VxWorks and EPICS. With the help of BCM system, the bunch current in each bucket can be monitored in the Central Control Room. The BEPCⅡ timing system can also use the bunch current database to decide which bucket needs to refill to implement ``top-off' njection.  相似文献   

3.
A passive higher harmonic cavity (HHC) will be used in the Hefei Light Source II Project (HLS-Ⅱ) to lengthen the bunch and consequently increase the beam lifetime dominated by Touschek scattering. The effects of constant voltage and constant detuning have been calculated and compared over the operating current from 0.4 to 0.2 A on the bunch lengthening for the passive normal conducting harmonic cavity system in HLS-Ⅱ. The results show that the bunch shape has less change and the lifetime improvement factors are not less than 2.7 over the beam currents for the constant voltage case. The constant voltage operating scheme may be applied to our machine.  相似文献   

4.
A scheme with two superconducting RF cavities is designed to upgrade electron storage rings with odd buckets to multi-length bunches. In this paper, the Hefei Light Source Ⅱ (HLS Ⅱ) is given as an example for odd buckets. As it is designed for 45 buckets, which is a multiple of 3, simultaneous generation of three different lengths of bunches is proposed with the presently applied user optics. The final result, without low-α optics, is to fill HLS Ⅱ with long bunches of length 50 ps, medium bunches of 23 ps and short bunches of 6 ps. Every third bucket can be filled with short bunches, of which the current limit is up to 6.6 mA, more than 60 times the limit for low-α mode. Moreover, particle tracking simulations to examine the beam dynamics, performed by ELEGANT, and calculations of the beam instabilities are presented in this paper.  相似文献   

5.
A higher-harmonic cavity will be used to increase the beam lifetime and suppress coupled-bunch instabilities for Hefei Light Source-Ⅱ. In this paper, results simulated by the particle-tracking model confirm that tuning in the harmonic cavity may suppress the parasitic coupled-bunch instabilities. The factors calculated for lifetime improvement are larger than 2.5. The 3rd and 4th harmonic cavities have been designed. In particular, the absorbers and antenna couplers are applied in harmonic cavities to damp the higher order modes. Finally, the 4th harmonic cavity similar to the Duke's RF cavity will be used for HLS-Ⅱ.  相似文献   

6.
In the Hefei Light Source (HLS) storage ring, multibunch operation is used to obtain a high luminosity. Multibunch instabilities can severely limit light source performance with a variety of negative impacts, including beam loss, low injection efficiency, and overall degradation of the beam quality. Instabilities of a multibunch beam can be mitigated using certain techniques including increasing natural damping (operating at a higher energy), lowering the beam current, and increasing Landau damping. However, these methods are not adequate to stabilize a multibunch electron beam at a low energy and with a high current. In order to combat beam instabilities in the HLS storage ring, active feedback systems including a longitudinal feedback system (LFB) and a transverse feedback system (TFB) will be developed as part of the HLS upgrade project, the HLS-Ⅱ storage ring project. As a key component of the longitudinal bunch-by-bunch feedback system, an LFB kicker cavity with a wide bandwidth and high shunt impedance is required. In this paper we report our work on the design of the LFB kicker cavity for the HLS-Ⅱ storage ring and present the new tuning and optimization techniques developed in designing this high performance LFB kicker.  相似文献   

7.
A novel phase-shifted long-period fiber grating(PS-LPFG)for the simultaneous measurement of torsion and temperature is described and experimentally demonstrated.The PS-LPFG is fabricated by inserting a pretwisted structure into the long-period fiber grating(LPFG)written in single-mode fiber(SMF).Experimental results show that the torsion sensitivities of the two dips are?0.114 nm/(rad/m)and?0.069 nm/(rad/m)in the clockwise direction,and?0.087 nm/(rad/m)and?0.048 nm/(rad/m)in the counterclockwise direction,respectively.The temperature sensitivities of the two dips are 0.057 nm/℃ and 0.051 nm/℃,respectively.The two dips of the PS-LPFG exhibit different responses to torsion and temperature.Simultaneous measurement of torsion and temperature can be implemented using a sensor.The feasibility and stabilization of simultaneous torsion and temperature measurement have been confirmed,and hence this novel PS-LPFG demonstrates potential for fiber sensing and engineering applications.  相似文献   

8.
王玉梅  任俊峰  原晓波  窦兆涛  胡贵超 《中国物理 B》2012,21(10):108508-108508
From experimental results of spin polarized injection and transport in organic semiconductors(OSCs),we theoretically study the current spin polarization and magnetoresistance under an electric and a magnetic field in a ferromagnetic/organic semiconductor/ferromagnetic(FM/OSC/FM) sandwich structure according to the spin drift-diffusion theory and Ohm’s law.From the calculations,it is found that the interfacial current spin polarization is enhanced by several orders of magnitude through tuning the magnetic and electric fields by taking into account the specific characteristics of OSC.Furthermore,the effects of the electric and magnetic fields on the magnetoresistance are also discussed in the sandwich structure.  相似文献   

9.
Multiple sclerosis (MS) causes demyelinating lesions in the white matter and increased iron deposition in the subcortical gray matter. Myelin protons have an extremely short T2* (< 1 ms) and are not directly detected with conventional clinical magnetic resonance (MR) imaging sequences. Iron deposition also reduces T2*, leading to reduced signal on clinical sequences. In this study we tested the hypothesis that the inversion recovery ultrashort echo time (IR-UTE) pulse sequence can directly and simultaneously image myelin and iron deposition using a clinical 3 T scanner. The technique was first validated on a synthetic myelin phantom (myelin powder in D2O) and a Feridex iron phantom. This was followed by studies of cadaveric MS specimens, healthy volunteers and MS patients. UTE imaging of the synthetic myelin phantom showed an excellent bi-component signal decay with two populations of protons, one with a T2* of 1.2 ms (residual water protons) and the other with a T2* of 290 μs (myelin protons). IR-UTE imaging shows sensitivity to a wide range of iron concentrations from 0.5 to ~ 30 mM. The IR-UTE signal from white matter of the brain of healthy volunteers shows a rapid signal decay with a short T2* of ~ 300 μs, consistent with the T2* values of myelin protons in the synthetic myelin phantom. IR-UTE imaging in MS brain specimens and patients showed multiple white matter lesions as well as areas of high signal in subcortical gray matter. This in specimens corresponded in position to Perl's diaminobenzide staining results, consistent with increased iron deposition. IR-UTE imaging simultaneously detects lesions with myelin loss in the white matter and iron deposition in the gray matter.  相似文献   

10.
A quasi-linear formalism is developed for relativistic particles. It is self-consistent including spatial diffusion. An attempt is made to simulate the process of electron cyclotron resonant heating (ECRH) and electron cyclotron current drive (ECCD) for the HL-2A tokamak. Temperature oscillating regimes in Tore Supra diagnosed by MHD activity seem to be reproduced in the simulation. The special feature in this paper is to see the resonance in the long time scale for relativistic plasma.  相似文献   

11.
This paper applies the symmetry-aziapted-cluster/symmetry-adapted-cluster configuration-interaction (SAC/SACCI) method to optimize the structures for X^1∑^+, A^1 Ⅱ and C^1 ∑^- states of SiO molecule with the basis sets D95++, 6-311++G and 6-311++G^**. Comparing the obtained results with the experiments, it gets the conclusion that the basis set 6-311++G^** is most suitable for the optimal structure calculations of X^1.∑^+, A^Ⅱ and C^1∑^- states of SiO molecule. The whole potential energy curves for these electronic states are further scanned by using SAC/6-311++G^** method for the ground state and SAC-CI/6-311++G^** method for the excited states, then use a least square method to fit Murrell~Sorbie functions, at last the spectroscopic constants and force constants are calculated, which are in good agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号