首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dual-action organic superconductors, whose conducting properties can be sharply controlled by an external magnetic field, have been discovered in systems consisting of organic conduction layers based on bis(ethylenedithio)tetraselenafulvalene (BETS) molecules and magnetic anions. Owing to the metamagnetic nature of the anion layers, the superconducting state of kappa-BETS2FeBr4 can be switched on or off by applying the external field. In lambda-BETS2Fe0.4Ga0.6Cl4, exhibiting a field-induced superconducting transition for the field parallel to the conduction plane, the insulating, metallic, and superconducting states can be realized in a stepwise manner by slightly tuning the external magnetic field.  相似文献   

2.
The electrical and magnetic properties of kappa-(BETS)(2)FeBr(4) salt [where BETS = bis(ethylenedithio)tetraselenafulvalene] showed that this system is the first antiferromagnetic organic metal at ambient pressure (T(N) = 2.5 K). The characteristic field dependence of the magnetization at 2.0 K indicates a clear metamagnetic behavior. The small resistivity drop observed at T(N) clearly shows the existence of the interaction between pi metal electrons and localized magnetic moments of Fe(3+) ions. In addition, this system underwent a superconducting transition at 1.1 K. That is, kappa-(BETS)(2)FeBr(4) is the first antiferromagnetic organic metal exhibiting a superconducting transition below Néel temperature. The magnetic field dependence of the superconducting critical temperature indicated that the superconductivity in this system is strongly anisotropic also in the conduction plane because of the existence of the metamagnetically induced internal field based on the antiferromagnetic ordering of the Fe(3+) 3d spins in contrast to the cases of the other conventional organic superconductors. Furthermore, the specific heat measurement exhibited a lambda-type large peak of zero-field specific heat corresponding to the three-dimensional antiferromagnetic ordering of high-spin Fe(3+) ions. The lack of distinct anomaly in the C(p) vs T curve at T(c) suggests the coexistence of the superconductivity and the antiferromagnetic order below T(c).  相似文献   

3.
The 2:1 salt of a new donor molecule, EDT-DSDTFVSDS with FeBr4- ion, (EDT-DSDTFVSDS)2.FeBr4 showed an essentially metallic behavior despite a small upturn in the electrical resistance below ca. 30 K (electrical conductivities at 290 and 4.2 K are 200 and 170 S cm-1, respectively). The Fe(III) d spins of the FeBr4- ions in this salt were subject to antiferromagnetic ordering at 3.3 K by virtue of a strong pi-d interaction (Jpid) which is comparable to that in a molecular metallic conductor, lambda-(BETS)2.FeCl4, and of a very weak d-d interaction (Jdd). This strong pi-d interaction was evidenced by a large and negative magnetoresistance effect (ca. 20% at 5 T) as well as by the appearance of a large dip in the resistance at the magnetic field (ca. 2.0 T) parallel to the easy axis for the spin-flop transition of the Fe(III) d spins.  相似文献   

4.
Several conducting salts based on BETS [where BETS = bis(ethylenedithio)tetraselenafulvalene] molecules and divalent magnetic anions such as the (CoCl(4))(2-), (CoBr(4))(2-), and (MnBr(4))(2-) were prepared. Electrocrystallization by using the (CoCl(4))(2-) anion gave two kinds of crystals. Block-shaped crystals were cleared to be (BETS)(2)CoCl(4), which is an insulator with the high-spin state of cobalt 3d spin. On the other hand, the X-ray crystal structure analysis of a plate-shaped crystal of the (CoCl(4))(2-) salt revealed the system to be kappa-(BETS)(4)CoCl(4)(EtOH), which is metallic down to 0.7 K. The electronic band structure calculation gave a typical two-dimensional cylindrical Fermi surface. However, there is only very weak antiferromagnetic interaction between the S = 3/2 cobalt 3d spins because of its anion-solvent-intermingled layer structure. On the other hand, the electrocrystallization by using the (MnBr(4))(2-) anion yielded the plate-shaped black crystals of the (MnBr(4))(2-) salt. Crystal structure analysis of the (MnBr(4))(2-) salt showed that the salt is theta;-(BETS)(4)MnBr(4)(EtOH)(2) with alternating donor and anion-solvent mixed layers. The stacking direction in one donor layer is perpendicular to those of the neighboring layers. The electrical and magnetic properties of the theta;-(BETS)(4)MnBr(4)(EtOH)(2) salt showed the metallic behavior down to approximately 30 K and the paramagnetism of the high-spin manganese 3d spins. Band structure calculation of this salt gave an elliptical cylindrical Fermi surface. Because the Fermi surfaces of the adjacent donor layers are rotated to each other by 90 degrees, the theta-(BETS)(4)MnBr(4)(EtOH)(2) salt becomes a two-dimensionally isotropic metal.  相似文献   

5.
Hybrid compounds containing organic layers composed of tetrathiafulvalenes (BEDT-TTF, BETS, BEDO-TTF) and inorganic layers consisting of anions based on lead bromide were synthesized. The crystal structure of (BEDT-TTF)6Pb3Br10(PhBr) was determined. The temperature dependences of electrical conductivity for the synthesized compounds were measured and the EPR spectra of these compounds were recorded. In the structure of (BEDT-TTF)6Pb3Br10(PhBr), the organic conducting layers of BEDT-TTF molecules alternate with non-conducting layers composed of infinite chains of bromoplumbate anions [Pb3Br9]3–, solvent molecules, and Br anions. The newly synthesized BEDT-TTF bromoplumbates have similar linewidths of EPR signals, which indicate that their conducting layers have similar structures. The BEDT-TTF bromoplumbates are semiconductors, while temperature-dependent electrical resistivity measurements show the metallic behavior for BEDO-TTF and BETS bromoplumbates.  相似文献   

6.
A new pi-d interaction system (EDT-TTFBr2)2FeBr4 (EDT-TTFBr2 = 4,5-dibromo-4',5'-ethylenedithiotetrathiafulvalene) and its nonmagnetic anion analogue (EDT-TTFBr2)2GaBr4 based on a brominated TTF-type organic donor are investigated. The salts featured by quasi-1D pi-electronic systems are metallic with metal-insulator transitions taking place at about 20 and 70 K for the FeBr4- and GaBr4- salts, respectively, where the low-temperature insulating state is associated with charge ordering or a Mott insulator followed by an antiferromagnetic transition at lower temperatures. The FeBr4- salt is featured with an antiferromagnetic transition of the anion d spins at a Neel temperature (TN) = 11 K, which is significantly high despite its long anion-anion Br-Br contact, suggesting the importance of the pi-d interaction in the magnetism. The surprisingly strong pi-d interaction, ca. -22.3 K estimated from the magnetization curve, evidences the usefulness of the chemical modification of the donor molecule with bromine substitution to achieve strong intermolecular interaction. The antiferromagnetic state of the anion d spins affects the transport of the conducting pi electrons through the strong pi-d interaction, as evidenced by the presence of a resistivity anomaly of the FeBr4- salt at TN. Below TN, the FeBr4- salt shows negative magnetoresistance that reaches -23% at the highest magnetic field investigated (B=15 T), whereas only a small positive magnetoresistance is observed in the pi-electron-only GaBr4- salt. The mechanism of the negative magnetoresistance is explained by the stabilization of the insulating state of the pi electrons by the periodic magnetic potential of the anion d spins in the FeBr4- salt, which is modified by applying the external magnetic field.  相似文献   

7.
Two donor molecules newly synthesized, dimethylthio- and ethylenedithio-tetrathiafulvalenothioquinone-1,3-diselenolemethides (1 and 2), were used to prepare their charge-transfer (CT) salts with a magnetic FeBr(4)(-) counteranion. For 1, a low electrical conducting 1:1 salt (1.FeBr(4)) was obtained, in which molecules of 1 are tightly dimerized in a one-dimensional (1D) stacking column. On the other hand, 2 gave a 2:1 salt (2(2).FeBr(4)) as two different kinds of plate crystals (I and II). Both I and II possess similar stacking structures of molecules of 2 in each 1D column with a half-cut pipelike structure along the c axis. However, for I, the stacking columns are aligned in the same direction along the a and b axes, while for II they are in the same direction along the a axis, but in the reverse direction along the b axis, resulting in the difference in the relative arrangement of molecules of 2 and FeBr(4)(-) ions between the two crystals. The room-temperature electrical conductivities of the single crystals of I and II were 13.6 and 12.7 S cm(-)(1), respectively. The electrical conducting behavior in I was metallic above 170 K but changed to be semiconducting with a very small activation energy of 7.0 meV in the temperature range 4-170 K. In contrast, II showed the semiconducting behavior in the whole temperature range 77-285 K. The corresponding nonmagnetic GaBr(4)(-) salts with almost the same crystal structure as I and II showed definitively different electrical conducting properties in the metal to semiconductor transition temperature in I as well as in the magnitude of activation energy in the semiconducting region of I and II. The interaction between the d spins of FeBr(4)(-) ions was weak and antiferromagnetic in both I and II, but the magnitude of the spin interaction was unexpectedly larger compared with that in the FeBr(4)(-) salt of the corresponding sulfur derivative of 2 with closer contact between the neighboring FeBr(4)(-) ions. These electrical conducting and magnetic results suggest a significant interaction between the conducting pi electrons and the d spins of FeBr(4)(-) ions located near the columns or layers.  相似文献   

8.
The crystal structure and physical properties of radical ion salts (EDO-TTFBr2)2FeX4 (X = Cl, Br) based on halogen-substituted organic donor and magnetic anions are investigated, including the comparison with the isomorphous compounds (EDO-TTFBr2)2GaX4 with nonmagnetic anions. The crystal structure of these four salts consists of uniformly stacked donor molecules and tetrahedral counter anions, and the Br substituents of the donor molecules are connected to halide ligands of anions with remarkably short intermolecular atomic distances. These salts show metallic behavior around room temperature and undergo a spin-density-wave transition in the low-temperature range, as confirmed with the divergence of the electron spin resonance (ESR) line width. Although close anion-anion contacts are absent in these salts, the FeCl4 salt undergoes an antiferromagnetic transition at TN = 4.2 K, and the FeBr4 salt shows successive magnetic transitions at TN = 13.5 K and TC2 = 8.5 K with a helical spin structure as a candidate for the ground state of the d-electron spins. The magnetoresistance of the FeCl4 salt shows stepwise anomalies, which are explained qualitatively using a pi-d interaction-based frustrated spin system model composed of the donor pi-electron and the anion d-electron spins. Although on the ESR spectra of the FeX4 salts signals from the pi- and d-electron spins are separately observed, the line width of the pi-electron spins broadens under the temperature where the susceptibility deviates from the Curie-Weiss behavior, showing the presence of the pi-d interaction.  相似文献   

9.
The 2:1 charge-transfer (CT) salts (1(2).FeBr(4) and 1(2).GaBr(4)) of ethylenedithiotetrathiafulvalenoquinone-1,3-dithiolemethide (1) with FeBr(4)(-) and GaBr(4)(-) counteranions were obtained as needle crystals, whose structures are almost the same as each other. The 1 molecules form a one dimensionally stacked column with alternation of their molecular axis direction, while the counteranions are aligned in parallel with the 1-stacked columns with the direction of their distorted-tetrahedral geometry maintained. The room-temperature electrical conductivities measured on the single crystals of 1(2).FeBr(4) and 1(2).GaBr(4) were 4.6 and 2.1 S cm(-1), respectively. From the temperature dependences of their electrical conductivities in both cases the electrical conducting properties were metallic between ca. 170 and 300 K, but below ca. 170 K converted to be semiconducting and continued till 5 K, although the activation energies are very small (4-10 meV). For 1(2).FeBr(4) very weak and antiferromagnetic interaction occurred between the d spins of FeBr(4)(-) ions in the temperature range of ca. 1-300 K. However, below ca. 15 K the ferromagnetic interaction was reversely preferential possibly by participation of the pi spin of 1.  相似文献   

10.
Magnetization and heat capacity were measured down to 0.4 K in a 2:1 charge-transfer (CT) salt of a new donor molecule, ethylenedithiotetrathiafulvalenoquinone-1,3-dithiolemethide (1) with a magnetic FeBr(4)(-) ion (1(2).FeBr(4)). The Fe(III) d spins of FeBr(4)(-) ions were subject to apparently ferromagnetic interaction with each other through the interaction with the pi spins developed by localization of the conducting pi electrons on the donor columns, eventually giving rise to ferrimagnetic ordering (FI) near 1 K, which provides the first example in a molecular pi-d system.  相似文献   

11.
Crystals of the bis(ethylenedithio)tetraselenafulvalene (BETS) radical cation salt with dicyanamidomanganate(II) anion, kappa-(BETS)2Mn[N(CN)2]3, were synthesized, which combine conducting and magnetic properties at ambient pressure and are superconducting (Tc approximately/= 5 K) at a moderate pressure of 0.3 kbar.  相似文献   

12.
The synthesis, crystal structure, and electrical, optical, and magnetic properties of kappa-BETS2[Fe(III)(C2O4)Cl2], where BETS is bis(ethylenedithio)tetraselenafulvalene, are reported. The black plate crystals consist of parallel donor layers, two per unit cell, displaying a kappa-type packing of BETS(0.5+) within the bc plane and anionic magnetic chains, [Fe(C2O4)Cl2-]n, running along the c axis. It displays metallic behavior down to 4.2 K, and analysis of the optical reflectivity data gives unscreened plasma energies of 0.69 eV (E parallel c) and 0.40 eV (E perpendicular c). The optical anisotropy is larger than that seen for other kappa phases and is described well by transfer integrals obtained from extended Hückel calculations. However, the transfer integrals need to be scaled down uniformly by a factor of 1.21 to reproduce the absolute experimental plasma frequencies. The band structure consists of a one-dimensional (1D) band and a hole pocket, characteristics of kappa phases. The magnetic properties were modeled by the sum of a 1D antiferromagnetic chain contribution from the d spins of Fe3+, a temperature-independent paramagnetic contribution, and a Curie impurity term. At 4.5 K, there is a signature of long-range magnetic ordering to a canted-antiferromagnetic state in the zero-field-cooled-field-cooled magnetizations, and at 2 K, a small hysteresis loop is observed.  相似文献   

13.
The 2:1 salts of a new bent donor molecule, ethylenedithiodiselenadithiafulvalenoquinone-1,3-diselenolemethide (EDT-DSDTFVODS) and either an FeBr(4)- or a GaBr(4)- ion exhibit semiconducting properties and had small activation energies. The Fe(III) d spins of the FeBr(4)- salt are initially subject to a strong antiferromagnetic interaction and afterward exhibited a weak ferromagnetism at 3.8 K with a very small remanent magnetization of ca. 4 x 10(-2) mu(B) and a spin-flop near 25 kOe along the intercolumnar direction.  相似文献   

14.
New layered organic conductors based on selenium- and sulfur-containing donor molecules of bis(ethylenedithio)tetraselenafulvalene (BETS) and deuterated bis(ethylenedithio)-tetrathiafulvalene (ET) with tetrahedral anions of divalent metals of the general formula (BETS)4HgBr4(1,2-C6H4Cl2), (ET-d8)4HgBr4(C6H4Cl2) and (ET-d8)4HgBr4(C6H5X) (where X = Cl, Br) were synthesized using halobenzenes as solvents. The crystal structure of (BETS)4HgBr4(C6H4Cl2) was studied at room temperature. A distinctive feature of the crystal structures of the compounds is the alternation of the conducting layers, which differ in direction of the radical cation stacks. The conductivity along the layers is of metallic character with the temperature decrease down to 4.3 K for (BETS)4HgBr4(C6H4Cl2) and down to 40—105 K for ET-d8-based compounds, while in the direction perpendicular to the conducting layers the conductivity is semiconducting. A comparative analysis of the temperature dependence of the resistivity for the compounds (ET)4HgBr4(Solvent) (Solvent is 1,2-C6H4Cl2, C6H5X), which are based on ET and its deuterated analog, allows one to suggest that the metal—metal phase transitions observed in the 220—285 K range are of different origin: in the compounds containing 1,2-C6H4Cl2 they are due to the ordering of solvent molecules, whereas in the compounds containing C6H5X the transitions are associated with rearrangements of the terminal ethylene groups.  相似文献   

15.
The 1:1 salt of a new donor molecule, ethylenedithiotetrathiafulvalenothioquinone-ethylenedithio-1,3-dithiolemethide (1), with FeBr4- ion, 1 x FeBr4, was prepared and found to exhibit a room-temperature electrical conductivity of 4 x 10(-2) S cm(-1) and semiconducting behavior with an activation energy of 170 meV. The paramagnetic susceptibility obeyed the Curie-Weiss law with a Curie constant of 4.42 emu K mol(-1) and a Weiss temperature of +3.4 K, and below 15 K, this short-range ferromagnetic interaction increasingly extended to two- and/or three-dimensional interactions, eventually giving rise to a ferromagnetic ordering, whose temperature (TC) was determined to be 1.8 +/- 0.2 K using a resonant circuit method. The magnetic field dependence of magnetization showed that the saturation of magnetization was accomplished at ca. 60 kOe and the saturated value was ca. 5 microB, which is very close to the value obtained only due to Fe(III) (S = 5/2) d spins of one FeBr4- ion.  相似文献   

16.
Eight new iron(III) amine-bis(phenolate) complexes are reported. The reaction of anhydrous FeX(3) salts (where X = Cl or Br) with the diprotonated tripodal tetradentate ligands 2-tetrahydrofurfurylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol), H(2)L1, 2-tetrahydrofurfurylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol), H(2)L2, and 2-methoxyethylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol), H(2)L3, 2-methoxyethylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol), H(2)L4 produces the trigonal bipyramidal iron(III) complexes, L1FeCl (1a), L1FeBr (1b), L2FeCl (2a), L2FeBr (2b), L3FeCl (3a), L3FeBr (3b), L4FeCl (4a), and L4FeBr (4b). All complexes have been characterized using electronic absorption spectroscopy, cyclic voltammetry and room temperature magnetic measurements. Variable temperature magnetic data were acquired for complexes 2b, 3a and 4b. Variable temperature M?ssbauer spectra were obtained for 2b, 3a and 4b. Single crystal X-ray molecular structures have been determined for proligand H(2)L4 and complexes 1b, 2b, and 4b.  相似文献   

17.
The first tetrahaloferrate spin crossover compound, [Fe(Metz)(6)](FeBr(4))(2) (Metz = 1-methyltetrazole), is reported. The FeBr(4)(-) ions form ferromagnetically coupled 1D stacks and exhibit an antiferromagnetic order at 2.2 K, which coexists with the gradual spin crossover centred at 165 K.  相似文献   

18.
We report the crystal structure and physical properties of the 2:1 FeCl4- salt of a new donor molecule, EDO-TTFVO. Crystal structure analysis of this salt revealed that the donor molecules formed a beta' '-type two-dimensional conducting layer, and there is a short S...Cl contact between the donor molecules and the FeCl4- ions, which is expected to mediate a strong pi-d interaction. This salt showed a stable metallic conducting behavior down to 0.3 K and an antiferromagnetic ordering at TN approximately 3.0 K, indicating that this salt becomes a new antiferromagnetic molecular metal at ambient pressure. The appearance of the magnetic ordering is considered to originate from the strong pi-d interactions between the donor molecules and the FeCl4- ions because the field dependence of magnetoresistances was remarkably affected below the antiferromagnetic transition temperature.  相似文献   

19.
New charge-transfer salts based on an unsymmetrical donor DMET [dimethyl(ethylenedithio)diselenadithiafulvalene] and metal halide anions (DMET)4MIICl4(TCE)2 (M = Mn, Co, Cu, Zn; TCE = 1,1,2-trichloroethane) have been synthesized and characterized by transport and magnetic measurements. The crystal structures of the DMET salts are isostructural, consisting of a quasi-one-dimensional stack of DMET and insulating layers containing metal halide anions and TCE. Semimetallic band structures are calculated by the tight-binding approximation. Metal-insulator transitions are observed at TMI = 25, 15, 5-20, and 13 K for M = Mn, Co, Cu, and Zn, respectively. The M = Cu salt exhibits anisotropic conduction at ambient pressure, being semiconducting in the intralayer current direction but metallic for the interplane current direction, down to T(MI). The metal-insulator transitions are suppressed under pressure. In the M = Co and Zn salts, large magnetoresistances with hysteresis are observed at low temperatures, on which Shubnikov-de Haas oscillations are superposed above 30 T. In the M = Cu salt, no hysteresis is observed but clear Shubnikov-de Haas oscillations are observed. The magnetoresistance is small and monotonic in the M = Mn salt. Paramagnetic susceptibilities of the spins of the magnetic ions are observed for the M = Mn, Co, and Cu salts with small negative Weiss temperatures of approximately 1 K. In the nonmagnetic M = Zn salt, Pauli-like pi-electron susceptibility that vanishes at TMI is observed. The ground state of the pi-electron system is understood as being a spin density wave state caused by imperfect nesting of the Fermi surfaces. In this pi-electron system, the magnetic ions of the M = Mn, Co, and Cu salts interact differently, exhibiting a variety of transport behaviors.  相似文献   

20.
Molecular conductors on the basis of bis(ethylenedithio)tetraselenafulvalene (BETS) with tetrahedral anions TlCl4 , MnBr4 2–, and CoCl4 2– were synthesized and studied by X-ray diffraction analysis. The salts under study exhibit various conducting properties: -(BETS)2TlCl4 (I) is a superconductor with T c = 2.5 K, -(BETS)4MnBr4 · 2C2H5OH (II) is a metal up to 30 K, while (BETS)2CoCl4 (III) is a dielectric. Salt I has -packing of the donor molecules, salt II has -packing, whereas salt III has no conducting layers. These structural differences are mainly the reasons for different conducting properties of compounds IIII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号