首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple finite difference scheme over a non‐uniform grid is proposed to solve the two‐dimensional, steady Navier–Stokes equations. Instead of the Newton method, a more straightforward line search algorithm is used to solve the resultant system of non‐linear equations. By adopting the multigrid methodology, a fast convergence is achieved, at least for low‐Reynolds number flow. This scheme is applied, in particular, to flow between eccentric rotating cylinders. The computed results are shown in good agreement with some analytic findings. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
A numerical experiment was carried out on the gas flow field between two eccentric cylinders, one of which is rotating. Attention was paid to the presence of separated recirculating regions from the continuum to the rarefied regimes. The direct simulations were performed by means of a Monte Carlo (DSMC) method and bi‐polar co‐ordinates were adopted. The calculations were relative to isothermal walls at the same temperature. Streamlines and velocity profiles were evaluated as functions of the Knudsen number, of the Mach number and of the geometric parameters. The gas considered was argon. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Transient behaviour of Taylor vortex flow between rotating concentric cylinders after sudden start has been observed by measuring axial velocity distributions V z (z) for Reynolds number between 70–1,300. We found that a somewhat noisy roll structure is established at an early time after the start. Azimuthal partial rolls can exist and fusions of rolls occur. These phenomena dissipate, and while definite sizes and locations of the rolls are adjusted, the system approaches the ordered structure steady state. The time needed for this transient process is in the order of (or shorter than) the diffusion time.  相似文献   

4.
This paper reports a convergent numerical algorithm for the Upper-Convected Maxwell (UCM) fluid between two eccentric cylinders at various eccentricity ratios (?); the outer cylinder is stationary, and the inner one rotating. The problem is solved by an unstructured control volume method (UCV), which is designed for a general viscoelastic flow problem with an arbitrary computational domain. A self-consistent false diffusion technique and an iteration scheme are used in combination to solve the problem. The computations of the UCM fluid using the numerical algorithm are carried out to a higher value of the Deborah number (De) at each eccentricity tested than hitherto possible with previous numerical simulations. The solutions are compared with previous numerical results, confirming the effectiveness of the UCV method as a general technique for solving viscoelastic flow problems.  相似文献   

5.
A mixed Galerkin technique with B-spline basis functions is presented to compute two-dimensional incompressible flow in terms of the primitive variable formulation. To circumvent the Babuska–Brezzi stability criterion, the artificial compressibility formulation of the equation of mass conservation is employed. As a result, the diagonal components of the matrix form in the governing equations are not singular. The B-spline basis is used because it is superior to other splines in providing computer solutions to fluid flow problems. One of the advantages of the B-spline basis is that it has excellent approximation properties. Numerical examples of applications of the mixed formulation are presented to demonstrate the convergence characteristics and accuracy of the present formulation. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The steady-state, two-dimensional creeping flow of an Upper-Convected Maxwell fluid between two eccentric cylinders, with the inner one rotating, is computed using a spectral/finite-element method (SFEM). The SFEM is designed to alleviate the numerical oscillations caused by excessive dispersion error in previous finite-element calculations and to resolve the stress boundary-layers that exist for high elasticity, as measured by the Deborah number De. Calculations for cylinders with low eccentricity (ϵ = 0.1) converged to oscillation-free solutions for De ≈ 90, extending the domain of convergence over traditional finite-element methods by a factor of thirty. The results are confirmed by extensive refinement of the discretization. At high De, steep radial boundary layers form in the stress, which match closely with those predicted by asymptotic analysis. Calculations at higher eccentricity require extreme refinement of the discretization to resolve the variations in the stress field in both the radial and azimuthal directions associated with the existence of the recirculation region. Results for ϵ = 0.4 show that the recirculation region present for the Newtonian fluid (De = 0) shrinks and then grows with increasing De. Calculations for ϵ = 0.4 are terminated by a limit point near DeL ≈ 7.24 for the finest discretization used. The Fourier series approximations are not convergent for this mesh, so the limit point must be considered to be an artifact of the discretization.  相似文献   

8.
Summary Results obtained in a previous paper byBallal andRivlin on the forces associated with the slow flow of an incompressible non-Newtonian fluid, contained in the annular region between two infinite eccentric rotating cylinders, are applied to the calculation of the forces associated with the planetary motion of the inner cylinder about the axis of the outer cylinder. Either, neither, or both of the cylinders may rotate about their axes with constant angular velocities. As a limiting case the motion of an infinite cylinder is considered, in a half-space of incompressible non-Newtonian fluid bounded by a rigid plane, when the cylinder moves with constant velocity perpendicular to its length and parallel to the plane.
Zusammenfassung Die in einer früheren Veröffentlichung vonBallal undRivlin erhaltenen Ergebnisse bezüglich der Kräfte, die beim langsamen Strömen einer inkompressiblen nicht-newtonschen Flüssigkeit im Ringspalt zwischen zwei unendlich langen exzentrisch rotierenden Zylindern auftreten, werden für die Berechnung der Kräfte angewendet, die bei der Planetenbewegung des inneren Zylinders um die Achse des äußeren Zylinders auftreten. Dabei dürfen beide Zylinder entwedet ruhen oder mit konstanter Winkelgeschwindigkeit um ihre Achsen rotieren. Als Grenzfall wird die Bewegung eines unendlich langen Zylinders in einem Halbraum betrachtet, der durch eine feste Ebene begrenzt wird, wobei der Zylinder eine konstante Geschwindigkeit senkrecht zur Achse und parallel zur Ebene besitzt.


With 21 figures and 1 table  相似文献   

9.
10.
The flow birefringence induced in solutions of rigid particles is studied experimentally in the region of the axisymmetrical Taylor vortex flow which arises once the velocity gradient G in the annular gap of a conventional Couette cell reaches a critical value G c .The measurements are performed for several values of G > G c and for 10 radial observation points in the annular gap. Solutions of two types of rigid particles are investigated: the first is a suspension of flattened clay particles like bentonite, while the second contains rod-like particles of tobacco mosaic virus (TMV). The variations of the birefringence intensity n and of the extinction angle measured in the domain of the axisymmetrical flow show a different behavior according to the shape of the particle in solution. This fact is confirmed theoretically with a good agreement for the measurements performed with solutions of flat particles.  相似文献   

11.
A computational study is performed on two-dimensional mixed convection in an annulus between a horizontal outer cylinder and a heated, rotating, eccentric inner cylinder. The computation has been done using a non-orthogonal grid and a fully collocated finite volume procedure. Solutions are iterated to convergence through a pressure correction scheme and the convection is treated by Van Leer's MUSCL scheme. The numerical procedure adopted here can easily eliminate the ‘Numerical leakage’ phenomenon of the mixed convection problem whereby strong buoyancy and centrifugal effects are encountered in the case of a highly eccentric annulus. Numerical results have been obtained for Rayleigh number Ra ranging from 7×103 to 107, Reynolds number Re from 0 to 1200 and Prandtl number Pr from 0.01 to 7. The mixed rotation parameter σ (=Ra/PrRe2) varies from ∞ (pure natural convection) to 0.01 with various eccentricities ε. The computational results are in good agreement with previous works which show that the mixed convection heat transfer characteristics in the annulus are significantly affected by σ and ε. The results indicate that the mean Nusselt number Nu increases with increasing Ra or Pr but decreases with increasing Re. In the case of a highly eccentric annulus the conduction effect becomes predominant in the throat gap. Hence the crucial phenomenon on whereby Nu first decreases and then increases can be found with increasing eccentricity. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
Numerical experiments are performed to study rotational effects on the mixed convection of low-Prandtlnumber fluids enclosed between the annuli of concentric and eccentric horizontal cylinders. The inner cylinder is assumed to be heated and rotating. The rotational Reynolds number considered is in the range where the effect of Taylor vortices is negligible. The Prandtl number of the fluid considered is in the range 0·01–1·0. The Rayleigh number considered is up to 106. A non-uniform mesh transformation technique coupled with the introduction of ‘false transient’ parameters to the vorticity and streamfunction-vorticity expressions was used to solve the governing set of equations. Results show that when the inner cylinder is made to rotate, the multicellular flow patterns observed in stationary cylindrical annuli subside in a manner depending on the Prandtl number of the fluids. Eventually the flow tends toward a uniform flow similar to that of a solid body rotation. For a fixed Rayleigh number and with a Prandtl number of the order of 1·0, when the inner cylinder is made to rotate, the mean Nusselt number is observed to decrease throughout the flow. For lower Prandtl number of the order 0·1–0·01 the mean Nusselt number remained fairly constant when the inner cylinder was made to rotate. The mean Nusselt numbers obtained were also compared with available data from other investigators.  相似文献   

13.
A computational study of viscous flow between two eccentrically rotating cylinders is presented in which the effect of viscous dissipation is taken into account. The space discretization is based on piecewise linear finite elements with velocity stabilization, while the method of characteristics is used for time integration. Numerical results illustrate the efficiency of the adopted approach.  相似文献   

14.
Flow transitions occurring with increase in the Taylor number in an annular gap of radius ratio 0.8, having an imposed axial flow of air of Reynolds number 500 have been studies using the output from a cross-wire probe in a complex digital analysis. Cross and phase spectra, together with auto and cross correlograms, are presented for four Taylor numbers from 10 620 to 12.2 × 106, covering the onset of vortex flow, chaotic flow and turbulent vortex flow. As the Taylor number increases, there is little alteration in the spiral vortex flow in the axial and tangential directions, which oscillates in phase in these two directions. The tangential velocity gradient was seen to become increasingly dominant, with increase in the Taylor number  相似文献   

15.
16.
Rheological measurements and light-scattering experiments were performed on dilute solutions of high molecular polystyrene. We are able to describe the orientation behavior of chain molecules under shear flow by means of light-scattering. Beyond that these investigations of light-scattering of flowing polymer solutions are an useful and suitable tool for detection and characterization of Taylor vortex formation. We can estimate the appearance of these hydrodynamic instabilities, which overlay the laminar main flow and we can observe a typical influence of the solvent power on it.Presented in part at the meeting of the Deutsche Rheologische Gesellschaft, Berlin, 13–15 May, 1991.  相似文献   

17.
This paper, the third in a series describing experimental investigations into spiral vortex flow, presents visual evidence illustrating adiabatic transition modes in a wide gap of radius ratio 0.848. Also, power spectra, relating to velocity fluctuations, are found to be comparable for two working fluids, oil and air. Good agreement has been found between these results and those published by the authors in which diabatic transition modes were related to the heat transfer characteristics of the flow at various axial Reynolds numbers  相似文献   

18.
Transitions occurring after the onset of spiral vortex flow in a wide concentric annular gap of radius ratio 0.8, formed by a stationary outer cylinder and a rotatable inner cylinder, have been studied experimentally. By isothermal heating of the annular surface, it was possible to consider diabatic as well as adiabatic conditions. At an axial Reynolds number of 500 and for a range of Taylor numbers up to 107, power spectra and auto-correlograms were taken at two radial positions near to the inner and outer annular surfaces; these are compared with previous results taken at mid-gap under adiabatic conditions. Measurements of turbulence intensity across the gap were made also. Probability histograms and signal traces for diabatic flow near to the outer annular surface are presented. It has been shown that the vortex transitions affect the thermal boundary layer and, consequently, the heat transfer rates at the outer surface. A positive radial thermal gradient was seen to have little effect on the flow. The imposed axial flow was shown to be stabilising under adiabatic conditions but destabilising under diabatic conditions.  相似文献   

19.
The onset of instability in the flow by an impulsively started rotating cylinder is analyzed under linear theory. It is well-known that at the critical Taylor number Tc=1695 the secondary flow in form of Taylor vortices sets in under the narrow-gap approximation. Here the dimensionless critical time c to mark the onset of instability for TTc is presented as a function of the Taylor number T. Available experimental data of water indicate that deviation of the velocity profiles from the primary flow occurs starting from a certain time 4c. It seems evident that during c4c the secondary flow is very weak and the primary state of time-dependent annular Couette flow is maintained.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号