首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
瓦斯爆炸诱导沉积煤尘爆炸的数值模拟   总被引:2,自引:0,他引:2  
李润之 《爆炸与冲击》2010,30(5):529-534
建立了描述瓦斯爆炸卷扬沉积煤尘参与爆炸的物理和数学模型,借助流场模拟平台,对瓦斯爆炸 卷扬沉积煤尘参与爆炸的过程进行了数值模拟;并把模拟值与实验值进行了对比;对爆炸过程中的速度场和 温度场进行了深入的分析。通过比较分析爆炸压力、速度场以及温度场,认为模拟结果清楚地展现了沉积煤 尘的扬起和爆炸过程,达到了瓦斯爆炸诱导沉积煤尘爆炸数值模拟的要求。  相似文献   

2.
为研究瓦斯煤尘复合爆炸影响因素的耦合规律,对煤粉质量浓度、甲烷体积分数、煤粉粒径、煤粉种类等4种影响因素进行了多因素与单因素实验分析。通过正交实验,将各因素对爆炸的影响进行了定量分析,结果表明,4个因素对最大爆炸压力pmax的影响由强到弱依次为:甲烷体积分数、煤粉质量浓度、煤粉种类、煤粉粒径;对最大爆炸压力上升速率(dp/dt)max的影响程度由强到弱依次为:甲烷体积分数、煤粉质量浓度、煤粉粒径、煤粉种类。对于体积分数为9%、11%的甲烷,复合体系的pmax随煤粉的质量增加而减小。当煤粉质量浓度增加到100、200 g/m3时,在与体积分数为6%的甲烷耦合作用下,会产生更强的“激励”作用,且煤粉浓度较大时,挥发分低的煤种最佳瓦斯浓度会降低。甲烷体积分数存在临界值,该临界值会改变挥发分因素的影响方式:低于此临界值时,高挥发分煤尘体系的(dp/dt)max更高,(dp/dt)max来临时间更短;高于此临界值时,低挥发分体系具有更高的爆炸强度。粒径影响挥发分的作用,粒径越大,挥发分的影响差异越明显。当甲烷体积分数为11%时,挥发分高的煤尘更容易受粒径的影响,直径小的煤尘体系,爆炸系数Kst更小;而低挥发分煤粉在甲烷体积分数接近当量时受粒径影响更明显。  相似文献   

3.
周永浩  甘波  姜海鹏  黄磊  高伟 《爆炸与冲击》2022,42(1):015402-1-015402-9
为揭示甲烷/煤尘复合爆炸火焰的传播机理,利用气粉两相混合爆炸实验系统,在低于甲烷爆炸下限条件下,采用高速摄影机记录火焰传播图像,通过热电偶采集火焰温度,研究了煤尘种类以及甲烷体积分数对甲烷/煤尘复合火焰传播特性的影响。结果表明:挥发分是衡量煤尘燃烧特性的主导因素;随着煤尘挥发分的升高,燃烧反应增强,火焰传播速度升高,火焰温度升高;挥发分含量差异较小时,水分含量越低,燃烧反应越剧烈;在相同条件下,焦煤的燃烧反应强度最高,其次为长焰煤,最后为褐煤;随着甲烷体积分数的增加,煤尘颗粒的燃烧可由释放挥发分的扩散燃烧转变为气相预混燃烧,燃烧反应增强,火焰传播速度和火焰温度显著升高;热辐射和热对流作用促进煤尘颗粒热解,释放挥发分进行燃烧反应,维持复合火焰的持续传播;随着混合体系中甲烷体积分数的增加,混合爆炸机制由粉尘驱动型爆炸转为气体驱动型爆炸,燃烧反应增强;甲烷/煤尘复合爆炸火焰可由未燃区、预热区、气相燃烧区、多相燃烧区和焦炭燃烧区5部分组成,湍流扰动导致燃烧介质空间分布存在差异,使得燃烧区无规则交错分布。  相似文献   

4.
本文概述了瓦斯煤尘爆炸火焰光谱实验研究的重要性,我们在弱爆炸和探测器小视场角的条件下,利用自己研制的多波道仪,在一端开口的Φ200cm×2900cm大型管道里,得到了CH4、空气和煤尘的混合物在不同状态下,特征波长λ等于0.8875、1.000、1.505、2.801和4.346微米(μ)的绝对辐射强度及其有关的变化规律,对结果进行了分析讨论,并与国外实验结果进行了对比,根据测量λ=4.346μ绝对辐射强度和我们选择的黑体辐射模型,获得了爆炸火焰的温度,该项研究不仅在工业中具有重要意义,而且对燃烧和化学动力学的研究也具有参考价值。  相似文献   

5.
针对某煤矿井下救生舱,利用ANSYS和LS-DYNA软件建立救生舱、瓦斯/瓦斯煤尘和巷道三维有限元模型。分别进行了真实内瓦斯/瓦斯煤尘爆炸作用下救生舱流固耦合数值分析,等效三角波爆炸冲击荷载作用下救生舱动态模拟和静水压力荷载作用下救生舱的极限承载力和极限变形的数值计算,确定救生舱动/静态承载能力变化规律和变形模式,给出瓦斯/瓦斯煤尘爆炸超压与救生舱承载能力和变形模式的变化规律。研究结果表明,等效三角波爆炸冲击荷载作用下该救生舱整体结构的极限超压明显比流固耦合计算分析结果大,流固耦合计算分析结果更接近于实验结果。该救生舱满足爆炸冲击波荷载下的变形要求时,其在静水压荷载作用下的变形也能满足。  相似文献   

6.
为研究不同变质程度煤尘爆炸压力特性变化规律,以最大压力pmax和最大压力上升速率(dp/dt)max表征压力特性,使用近球形煤尘爆炸装置对褐煤、长焰煤、不黏煤和气煤的爆炸压力特性变化规律展开分析。研究发现:在4种煤尘样品中,褐煤的pmax和(dp/dt)max均最大,分别达0.71 MPa和65.69 MPa/s。随变质程度增大,长焰煤、不黏煤和气煤的pmax和(dp/dt)max均明显减小,说明以爆炸压力特性为标准,4种煤尘爆炸强度由高到低依次是褐煤、长焰煤、不黏煤和气煤。通过对比爆炸前后煤尘挥发分含量,得出参与爆炸的挥发分含量所占质量分数为46.28%~68.19%。在喷尘压力 p0=2.0 MPa,点火延迟时间t0=100 ms时,4种煤尘pmax值均达最大,分别为0.71、0.60、0.55和0.47 MPa。褐煤、不黏煤和气煤在 p0=2.0 MPa,t0=80 ms时(dp/dt)max达最大,而长焰煤则在 p0=2.0 MPa,t0=100 ms时(dp/dt)max达到最大。  相似文献   

7.
为了研究瓦斯的爆炸危险性,选取对其影响较大的初始温度和初始压力进行实验研究。运用特殊环境20 L爆炸特性测试系统,对不同初始温度(25~200 ℃)和初始压力(0.1~1.0 MPa)条件下瓦斯的爆炸极限、最大爆炸压力和点火延迟时间进行实验研究。结果表明:高温高压条件使瓦斯的爆炸上限升高、下限降低,爆炸极限范围扩大;随着初始温度升高,瓦斯爆炸的最大爆炸压力逐渐减小;初始温度越高,点火延迟时间越短。通过对实验结果的分析,运用安全原理知识和危险度定义,给出初步评估瓦斯爆炸危险性的方法。  相似文献   

8.
为预测煤尘爆炸能量,基于量纲分析理论建立煤尘爆炸能量预测模型。选取爆炸能量E、空气密度ρ和大气压强p的量纲为导出量纲。根据量纲分析Π定理得出含有待定参数λ的具有普适性的能量预测模型。通过小型煤尘爆炸性实验设计,测定10次爆炸最长火焰长度平均值l0、10次最长火焰长度出现时间平均值t0与该小型煤尘爆炸中释放能量E0,确定模型中参数λ为0.467。对模型变量t、E、l的函数关系进行合理性检验。通过实测的15组不同时刻的火焰长度进行模型变量t、l幂指关系检验。检验结果表明:量纲选取完备,预测模型科学合理。  相似文献   

9.
为了研究煤尘爆炸气固态残留物成分差异性及其时空分布规律,利用水平管道煤尘爆炸装置进行了煤尘爆炸实验,收集并分析了气固态残留物类别及特征。研究表明:爆炸后煤尘中灰分显著增加,挥发分和固定碳减少;爆炸前后煤尘的微观形貌特征差别明显,爆炸后煤尘颗粒表面光滑,且产生了颗粒破裂现象,部分颗粒中出现孔洞,少数颗粒呈现薄壳状,颗粒之间出现了粘结现象;煤尘爆炸气体残留物成分主要有氧气、氮气、一氧化碳、二氧化碳、甲烷、乙烯、乙烷、乙炔、丙烷等,爆源点处最低氧气浓度仅为2.52%,一氧化碳浓度达到0.38%~0.68%,距离爆源点越远,氧气浓度越高,碳氧化物气体与烃类气体浓度越低。  相似文献   

10.
针对高瓦斯矿发火区封闭时常发生瓦斯爆炸事故,对影响瓦斯爆炸界限的因素进行实验,探索温度、压力、可燃气体(CO)、惰性气体(N2和CO2)等条件对瓦斯爆炸界限的影响规律。得出常温常压下瓦斯爆炸的体积分数下限为5%,瓦斯爆炸上限为13.5%,以及CO2的惰化效果比N2更好的结论。根据实验数据绘制混合气体的爆炸三角形,并进行新的惰化分区划分,不仅为火区封闭时防治瓦斯爆炸提供新的技术途径,而且能计算出使火区惰化时,所需惰性气体量,可对这些因素进行合理控制,有效地降低瓦斯爆炸危险性。  相似文献   

11.
密闭空间煤粉的爆炸特性   总被引:4,自引:0,他引:4  
高聪  李化  苏丹  黄卫星 《爆炸与冲击》2010,30(2):164-168
利用ISO6184/1和IEC推荐的20L球型爆炸测试装置,对4种规格的煤粉进行了系统的粉尘爆炸实验,探讨了煤粉的爆炸规律。得到了样品的爆炸下限浓度、最大爆炸压力,最大爆炸压力上升速率变化规律;分析了浓度、粒径、点火能量对煤粉爆炸猛烈度的影响。结果表明,粒径越小的煤粉,爆炸下限越小,而且在指定浓度下爆炸越猛烈。随着浓度的增大,最大爆炸压力和上升速率先增后减。样品3,峰值爆炸压力对应的浓度为400~1000g/m3,爆炸压力最大值为0.54MPa;点火头能量的增大在一定程度上促使反应更充分,从而爆炸强度更强。由于煤粉组成的特点,实验数据一定程度上说明了爆炸过程中气相燃烧的重要作用。 更多还原  相似文献   

12.
基于改进的20 L球形粉尘爆炸装置,在相同初始条件下分别测量了甲烷、石松子粉尘和甲烷/石松子两相混合体系的爆炸压力、爆炸压力上升速率和爆炸指数等参数,系统研究了甲烷/石松子粉尘两相混合体系爆炸特性变化规律。结果表明:甲烷的添加能显著提高低质量浓度石松子粉尘爆炸压力而降低高质量浓度石松子粉尘爆炸压力;甲烷对石松子粉尘最大爆炸压力没有显著影响,但能显著提高石松子粉尘最大爆炸压力上升速率。甲烷/石松子粉尘混合体系爆炸指数高于单相石松子粉尘爆炸指数,但甲烷/石松子粉尘混合体系和单相石松子粉尘爆炸指数均低于单相甲烷爆炸指数。工业生产过程中应避免粉尘混入可燃气体以降低粉尘爆炸危险性。  相似文献   

13.
基于标准20 L球形爆炸装置,在相同测试条件下, 分别测量了石松子粉尘、甲烷和不同浓度配比的甲烷/石松子粉尘混合体系爆炸下限,并将测试结果与Le Chatelier’s law、Bartknecht curve、Jiang method等混合体系爆炸下限预测结果进行了对比。结果表明:低于爆炸下限的甲烷和低于爆炸下限的石松子粉尘混合后仍具有爆炸危险性。石松子粉尘爆炸下限随混合体系中甲烷体积分数的增高而减小。Le Chatelier’s law、Bartknecht curve、Jiang method均不能准确预测甲烷/石松子粉尘混合体系爆炸下限。Le Chatelier’s law对甲烷体积分数φ与甲烷爆炸下限φL之比φ/φL<0.5的混合体系爆炸下限的预测值偏小,而对φ/φL>0.5的混合体系预测值偏大;Bartknecht curve在预测φ/φL>0.5的混合体系爆炸下限时适用性较好,而对于φ/φL<0.5的混合体系预测值偏小;Jiang method不适用于预测甲烷/石松子粉尘混合体系爆炸下限。  相似文献   

14.
为防控工业粉尘爆炸和完善粉尘爆炸测试方法,在Siwek20L球形爆炸测试系统内,实验研究了 不同点火能量下高、低挥发性粉尘的爆炸行为。对粉尘爆炸猛度(最大爆炸压力、最大升压速率和燃烧持续时 间)、敏感度(爆炸下限)及惰性介质的抑爆效力随点火能量的变化规律进行了重点探讨。结果表明,增加点火 能量能提高粉尘云爆炸能量和燃烧速率,低挥发性粉尘爆炸行为受点火能量的影响更显著。低挥发性粉尘在 低质量浓度下无法被低点火能量充分引燃,爆炸不良效应显著;随着粉尘质量浓度的增加,爆炸不良效应不 断减弱直至消失。低挥发性粉尘爆炸下限随点火能量增加急剧下降,而高挥发性粉尘爆炸下限受点火能量影 响较小。惰性介质抑爆效力随点火能量增加而下降。建议采用5~10kJ点火能量考察低挥发性粉尘爆炸下 限及惰性介质对粉尘爆炸的抑制效力。研究结果有助于理解粉尘爆炸规律、完善测试方法和安全设计。  相似文献   

15.
搭建了一套兼具承压和可视性能粉尘爆炸实验平台,在压力积聚工况下实验研究了石松子粉尘爆炸火焰传播特性。实验结果表明:压力积聚工况下的石松子粉尘爆炸火焰呈现空间离散的束状结构,火焰锋面呈齿状。随着粉尘浓度的提升,火焰连续性增强,锋面趋于平滑,亮度增加,并在750g/m^3达到最佳。不同浓度条件下的石松子粉尘爆炸火焰在传播过程中均呈现明显的速度脉动特征,但脉动频率随粉尘浓度的增大而减小。爆炸火焰平均传播速度随粉尘浓度的增大先增大后减小,并在750g/m^3达到最高。不同浓度条件下的石松子粉尘爆炸火焰前期传播速度均高于后期传播速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号