首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface nitriding of the titanium by the mixing technology with laser and plasma (LPN) in atmosphere has been investigated. Comparing with the technique of laser nitriding, we could obtain the titanium nitride at relatively low laser power density and the oxidation was prevented without the chamber. The synthesized layers comprised of titanium nitrides were about 178 μm depth. The effect of the laser power density, scanning velocity, and plasma flow rate on the components consisting of the material of the nitrided layer was studied. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to reveal the components consisting of the material of the nitrided layer.  相似文献   

2.
Owing to poor tribological properties, titanium (Ti) alloys are usually surface-treated to enhance their surface properties. Laser surface nitriding, among others, is a common method employed to increase hardness and wear resistance for Ti alloys. Conventional laser nitriding involves surface melting of Ti alloys in a nitrogen atmosphere. This inevitably results in a roughened surface and post-treatment might be required. The present study aims at laser diffusion nitriding Ti alloys without surface melting via carefully selecting the laser processing parameters. The nitrided surface was characterized by X-ray diffractometry (XRD), optical microscopy (OM), scanning-electron microscopy (SEM), and profilometry. The nitride layer formed was about 1.62 μm upon repeated passes. The change in surface roughness resulting from laser diffusion nitriding was only minimal. Nanoindentation measurements revealed that the hardness of the nitride layer was around 11.3 GPa, being about 2.3 times that of Ti-6Al-4V. Ball-on-slab sliding wear test recorded a reduction in wear volume by about 8 times. The results of the present work thus demonstrate the feasibility of diffusion nitriding of Ti-6Al-4V by laser treatment for enhancing its surface properties and performance.  相似文献   

3.
Surface nitriding of a Ti–6Al–4V alloy by laser melting in a flow of nitrogen gas has been investigated, with the aim of increasing surface hardness and hence improving related properties such as wear and erosion resistance. The effect of the scanning speed, nitrogen dilution, and nitrogen flow rate on microstructure, microhardness, and cracking of the nitrided layers was studied. Optical, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction (XRD) were used to reveal the microstructure and to identify the phases formed. It is shown that smooth, deep, and crack-free nitride layers of a surface hardness ranging between 500 and 800 HV can be obtained by controlling the processing parameters. Cracks are present in the sample processed at slow scanning speed and high laser power. Dilution of the nitrogen gas with argon gas leads to a crack-free nitride layer at the expense of a reduction in surface hardness. Slow scanning speeds lead to the formation of a deep and hard surface layer, and increasing the nitrogen flow rate results in a rough surface with a slight increase in hardness.  相似文献   

4.
Thermal stability of iron nitrides prepared by mixing laser and plasma beam nitriding (LPN) technology was studied. The treated samples were annealed in vacuum at different temperature from 473 K to 1273 K. The phases were detected by X-ray diffraction (XRD), the nitride’s contents were calculated from the patterns of XRD, and the microstructures were analyzed by scanning electron microscope (SEM). Three critical temperatures (473 K, 673 K, and 1273 K) are found. Due to deeper nitriding layer in the LPN sample, the nitrides is more stable than that in laser-produced sample at the annealing temperature higher than 973 K. It is important and central for some potential industrial productions and applications.  相似文献   

5.
The excimer laser nitriding process reported is developed to enhance the mechanical and chemical properties of aluminum alloys. An excimer laser beam is focused onto the alloy surface in a cell containing 1-bar nitrogen gas. A vapor plasma expands from the surface and a shock wave dissociates and ionizes nitrogen. It is assumed that nitrogen from plasma in contact with the surface penetrates to some depth. Thus it is necessary to work with a sufficient laser fluence to create the plasma, but this fluence must be limited to prevent laser-induced surface roughness. The nitrogen-concentration profiles are determined from Rutherford backscattering spectroscopy and scanning electron microscopy coupled to energy-dispersive X-ray analysis. Crystalline quality is evidenced by an X-ray diffraction technique. Transmission electron microscopy gives the in-depth microstructure. Fretting coefficient measurements exhibit a lowering for some experimental conditions. The polycrystalline nitride layer obtained is several micrometers thick and composed of a pure AlN (columnar microstructure) top layer (200–500 nm thick) standing on an AlN (grains) in alloy diffusion layer. From the heat conduction equation calculation it is shown that a 308-nm laser wavelength would be better to increase the nitride thickness, as it corresponds to a weaker reflectance R value for aluminum. Received: 17 October 2000 / Accepted: 19 October 2000 / Published online: 23 May 2001  相似文献   

6.
高功率二极管泵浦激光模块技术研究   总被引:2,自引:2,他引:0       下载免费PDF全文
 开展了二极管泵浦棒状Nd:YAG激光模块技术研究,在数值模拟激光模块增益分布的基础上对耦合结构进行了优化,初步研制出了高增益振荡级激光模块及高储能放大激光模块。实验结果表明,振荡级激光模块泵浦均匀且增益较高,TEM00模输出情况下单脉冲能量为11.8mJ, 光-光效率为 15%;放大模块在500Hz重复频率下获得了单脉冲400mJ的储能。  相似文献   

7.
This study focuses on the chemical, morphological and structural characterization of iron surfaces treated by laser in ambient air. Incorporation of nitrogen over a 1–2 μm thickness (10–30 at.% at the profile maximum) and superficial oxidation on 200–400 nm depth have been evidenced by nuclear reaction analyses. X-ray diffraction at grazing incidence has shown the formation of FeO and Fe3O4 oxide phases as well as γ-Fe(N), and ε-FexN for a sufficiently high amount of nitrogen incorporated. Treatments performed with different laser beams indicate that the parameter playing the major role in surface modification processes is the wavelength. Nitrogen incorporation has been found to occur via the interaction of reactive N, present in the laser-induced plasma, and the iron molten bath. The nitriding process is promoted in the IR wavelength range. Oxidation takes place by chemical reaction during the cooling step, and is furthered in the case of UV treatment.  相似文献   

8.
Titanium samples were treated by the mixing technology with laser and plasma (LPN) using different laser power densities. These nitrided samples were then annealed at 473 K, 673 K, 873 K, and 1073 K for 2 h in vacuum, respectively. The samples before and after annealing were characterized at room temperature and compared in terms of microstructure. X-ray diffraction and cross-sectional optical microscopy studies showed that the layer structure of the titanium nitride coating is preserved after annealing at 1073 K when the coating is formed using a laser power density of 8.0 × 105 W/cm2. Therefore, titanium nitride coatings produced by LPN demonstrate excellent thermal stability and are potential candidates for high temperature tribological applications.  相似文献   

9.
As a technique to improve the ability of optical films to resist laser-induced damage (ARLID), laser preconditioning has been investigated broadly. In this paper, the laser preconditioning effect has been analyzed based on the defect-initialized damage mechanism that the author had put forward previously. Theoretical results show that an energy density scope (PEDS) exists in which the preconditioning laser can effectively improve the ARLID of optical films. In addition, when the energy density of the testing laser pulse is altered, the boundary of PEDS will change accordingly. Experimental results have verified these theoretical assumptions. PEDS will also become wider if the critical energy density of the preconditioning laser that can induce films’ micro-damage increases, or the critical energy density of the preconditioning laser that can cause laser annealing decreases. In these cases, it is relatively easy to improve the ARLID of optical films. Results of the current work show great significance in enhancing the ARLID of optical films through the laser preconditioning technique.  相似文献   

10.
Rhodamine-110/sol-gel samples are prepared by sol-gel technique using dip method. Concentration dependent photophysical studies of these samples have indicated about the least possibility of aggregate formation. The lasing action of Rh-110 in silica samples is studied as a function of dye concentration. An efficient laser emission is observed when the samples are transversely pumped at 337.1 nm and 1.5 Hz repetition rate using a nitrogen laser (400 μJ energy/pulse and 4 ns pulse duration). The maximum of 166% laser efficiency of dye doped sol-gel samples compared to Rhodamine-6G (Rh-6G) in methanol is achieved. The photostability is also measured by using N2 laser at 1 Hz and it is found nearly 165 pulses. The possible reasons for the photodegradation of the dye molecules are discussed in detail.  相似文献   

11.
Laser gas assisted nitriding of Ti-6Al-4V alloy is carried out and nitride compounds formed and their concentration in the surface vicinity are examined. SEM, XRD and XPS are accommodated to examine the nitride layer characteristics. Microhardness across the nitride layer is measured. Temperature field and nitrogen distribution due to laser irradiation pulse is predicted. It is found that the nitride layer appears like golden color; however, it becomes dark gold color once the laser power irradiation is increased. The δ-TiN and ?-TiN are dominant phases in the surface vicinity. The needle like dendrite structure replace with the feathery like structure in the surface region due to high nitrogen concentration. No porous or microcracks are observed in the nitrided layer, except at high power irradiation, in this case, elongated cracks are observed in the surface region where the nitrogen concentration is considerably high.  相似文献   

12.
Schaaf  Peter  Landry  Felix  Han  Meng  Carpene  Ettore  Lieb  Klaus-Peter 《Hyperfine Interactions》2002,139(1-4):307-314
Nitriding is a common method for improving the hardness, mechanical properties, wear and corrosion resistance of metals. Laser nitriding of metals is an efficient process, where the irradiation of surfaces in air or nitrogen atmospheres with short laser pulses leads to a fast take-up of nitrogen into the irradiated surfaces. This process has been extensively investigated for pure iron, but usually, no tools or functional parts are made of pure iron. Mainly steel or cast iron is used as a base material. Therefore, when looking for technical applicability, also the influence of alloying elements on the laser nitriding process is of great interest. Besides the pure iron various carbon steels and an austenitic stainless steel were studied in laser nitriding experiments in order to investigate the influence of the material itself. Here, the process is investigated via Conversion Electron and X-ray Mössbauer Spectroscopy (CEMS and CXMS), Resonant Nuclear Reaction Analysis (RNRA), and X-Ray Diffraction (XRD). It appears that carbon steels are even better suited for the laser nitriding process than pure iron, and the laser nitriding also works efficiently for the stainless steel which is normally difficult to be nitrided.  相似文献   

13.
Iron nitride (FexN) is obtained by the mixing technology with laser and plasma beams coaxially on the surface of pure iron in atmosphere. In this technology, laser and plasma provide heat source and nitrogen ion source, respectively, easily to nitriding the sample. The feasibility of the method is analyzed in theory. Small-angle X-ray diffraction measurements reveal formation of iron nitride in the as-treated sample, and scanning tunneling microscope measurements describe the surface profiles of the irradiated area, at different laser energy densities or different scanning velocities.  相似文献   

14.
Armco iron samples were surface nitrided by irradiating them with pulses of an excimer laser in a nitrogen atmosphere. The resulting nitrogen depth profiles measured by Resonant Nuclear Reaction Analysis (RNRA) and the phase formation determined by Conversion Electron Mössbauer Spectroscopy (CEMS) were investigated as functions of energy density and the number of pulses. The nitrogen content of the samples was found to be independent of the number of pulses in a layer of 50 nm from the surface and to increase in depths exceeding 150 nm. The phase composition did not change with the number of pulses. The nitrogen content can be related to an enhanced nitrogen solubility based on high temperatures and high pressures due to the laser-induced plasma above the sample. With increasing pulse energy density, the phase composition changes towards phases with higher nitrogen contents. Nitrogen diffusion seems to be the limiting factor for the nitriding process.  相似文献   

15.
The effect of laser surface treatment on the surface energy of copper plate was investigated in terms of the surface microstructure analysis and theoretical computation in this paper. The surfaces of the copper plates were treated by Nd:YAG pulsed laser with different powers. The microstructures of the treated copper plates were analyzed by optical microscopy and X-ray diffraction (XRD), and the wetting experiment was performed to evaluate the variation of surface energy. The results showed that the surface microstructure and the corresponding surface energy of copper, changed with the variation of the laser power. The experimental results further explained by XRD results and theoretical calculation, demonstrated that the surface energy changed when the crystal structure in the surface layer was re-oriented in a preferred orientation after laser irradiation.  相似文献   

16.
We synthesized noncentrosymmetric single crystals of L-phenylalanine nitrate (LPN) and tris L-(phenylalanine) L-phenylalaninium nitrate (TPLPN) by slow solvent evaporation technique. Both crystallized in monoclinic system with different acentric space groups namely P21 (LPN) and C2 (TPLPN) respectively. The IR and Raman spectral investigation was done for LPN and TPLPN and discussed. The UV-vis-studies accomplished the excitation wavelength of the grown crystals suitable to exhibit second harmonic generation signal. From the absorption data, remarkable optical properties such as direct band gap energy, Urbach energy, extinction coefficient were evaluated. The mechanical strength of the grown crystal was examined by Vickers micro hardness test. The temperature of decomposition was confirmed by TG/DSC analysis. Fluorescence emission spectrum of LPN and TPLPN were recorded and lifetime was also studied. The dielectric constant and dielectric loss of LPN and TPLPN has been determined as a function of frequency and temperature. Also the surface topologies of the crystallized salts were assessed by SEM studies. The third-order nonlinearities of LPN and TPLPN were determined by Z-scan technique with Nd: YAG at 532?nm and thereby from closed and open Z-scan data, third-order susceptibilities were calculated to be χ(3)?=?8.826?×?10?6 esu for LPN and χ(3)?=?2.552?×?10?7 esu for TPLPN.  相似文献   

17.
Laser nitriding is used for the fast and easy production of nitride coatings on iron and alloys. Here, first results of the laser nitriding process applied to stainless steel are reported. The laser treatment led to the appearance of additional lines in the Mössbauer spectra, which are attributed to γ-Fe(N) produced by the laser nitriding process. The Mössbauer results are discussed in connection with the results obtained from X-ray diffraction and resonant nuclear reaction analysis. Furthermore, the results of isochronical annealing treatments of laser nitrided iron are reported.  相似文献   

18.
19.
激光驱动飞片的动量耦合模型研究   总被引:4,自引:1,他引:3       下载免费PDF全文
 激光驱动飞片技术在动高压加载和模拟空间高速粒子运动规律等实验中有重要的应用价值。而激光与飞片的动量耦合模型研究是激光驱动飞片技术的重要内容之一,其实质是激光与物质的作用规律的宏观表征。以激光支持爆轰波(LSDW)理论为基础,建立了约束条件下激光驱动飞片的动量模型,模型考虑了激光功率密度、脉宽、聚焦焦斑、侧向稀疏波、飞片表面气体参数、飞片面积等因素的影响,比较全面地反映了LSDW对飞片的力学作用特性,理论计算结果与参考文献结果吻合较好,误差不超过25%。  相似文献   

20.
A high-power continuous CO2 laser (4 kW) can provide energy capable of causing melting or even, with a special treatment of the surface, vaporization of an XC42-steel sample. The laser–metal interaction causes an energetic machining mechanism, which takes place according to the assumption that the melting front precedes the laser beam, such that the laser beam interacts with a preheated surface whose temperature is near the melting point. The proposed model, obtained from the energy balance during the interaction time, concerns the case of machining with an inert gas jet and permits the calculation of the characteristic parameters of the groove according to the characteristic laser parameters (absorbed laser energy and impact diameter of the laser beam) and allows the estimation of the quantity of the energy causing the thermal affected zone (TAZ). This energy is equivalent to the heat quantity that must be injected in the heat propagation equation. In the case of a semi-infinite medium with fusion temperature at the surface, the resolution of the heat propagation equation gives access to the width of the TAZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号