首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we investigate the effects of thiocyanate anions on the switching and the structure of poly(Nisopropylacrylamide)(PNIPAM) brushes using a molecular theory. Our model takes into consideration the PNIPAM–anion bonds, the electrostatic effects and their explicit coupling to the PNIPAM conformations. It is found that at low thiocyanate anion concentration, as the anion concentration of thiocyanate increases, thiocyanate anions are more associated with PNIPAM chains through the PNIPAM–anion bonds, which contributes to stronger electrostatic repulsion and leads to an increase of lower critical solution temperature(LCST). By analyzing the average volume fractions of PNIPAM brushes,it is found that the PNIPAM brush presents a plateau structure. Our results show that the thiocyanate anions promote phase segregation due to the PNIPAM–anion bonds and the electrostatic effect. According to our model, the reduction of LCST can be explained as follows: at high thiocyanate anion concentration, with the increase of thiocyanate concentration, more ion bindings occurring between thiocyanate anions and PNIPAM chains will result in the increase of the hydrophobicity of PNIPAM chains; when the increase of electrostatic repulsion is insufficient to overcome the hydrophobic interaction of PNIPAM chains, it will lead to the reduction of brush height and LCST at high thiocyanate anion concentration. Our theoretical results are consistent with the experimental observations, and provide a fundamental understanding of the effects of thiocyanate on the LCST of PNIPAM brushes.  相似文献   

2.
Peptides/proteins aggregation can give rise to pathological conditions of many human diseases.Small partially ordered oligomers formed in the early stage of aggregation,rather than mature fibrils,are thought to be the main toxicity agent for the living cell.Thus,understanding the pathway and the underlying physical mechanism in the early stage of aggregation is very important for prevention and treatment of these protein functional diseases.Herein we use all-atom molecular dynamics simulations to study the aggregation of four NFGAIL hexapeptides(NFGAIL peptide is a core segment of human islet amyloid polypeptide and exhibits similar aggregation kinetics as the full-length polypeptide).We observe that the peptide monomers in water mainly adopt non-structural coil configurations;the four peptides which are randomly placed in water aggregate spontaneously to partially ordered oligomer(β-sheets)through dimerization or trimerization,with the dimerization predominated.Both parallel and anti-parallelβ-sheets are observed.The hydrophobic interactions drive the initial peptides associations,and the subsequent conformational fluctuations promote the formation of more hydrogen bonds between the dangling hydrogen sites in the main chains of peptides.  相似文献   

3.
Long-range effects on the pyroelectric coefficient of a ferroelectric superlattice consisting of two different ferroelectric materials are investigated based on the transverse Ising model.The effects of the interfacial coupling and the thickness of one period on the pyroelectric coefficient of the ferroelectric superlattics are studied by taking into account the long-range interaction.It is found that with the increase of the strength of the long-range interaction,the pyroelectric coefficient decreases when the temperature is lower than the phase transition temperature;the mumber of the pyroelectric peaks decreases gradually and the phase transition temperature increases,It is also found that with the decrease of the interfacial coupling and the thickness of one period.the phase transition temperature and the number of the pyroelectric peaks decrease.  相似文献   

4.
The propagation of light waves in an underdense plasma is studied using one-dimensional Vlasov-Maxwell numerical simulation.It is found that the light waves can be scattered by electron plasma waves as well as other heavily and weakly damping electron wave modes,corresponding to stimulated Raman and Brilluoin-like scatterings.The stimulated electron acoustic wave scattering is also observed as a high scattering level.High frequency plasma wave scattering is also observed.These electron electrostatic wave modes are due to a non-thermal electron distribution produced by the wave-particle interactions.The collision effects on stimulated electron acoustic wave and the laser intensity effects on the scattering spectra are also investigated.  相似文献   

5.
The assessment of nanomechanical properties of a single amyloid fibril in a confined space provides important information for understanding the role of fibrils in a cell microenvironment.In this study,the structure and nanomechanical properties of different fibrils formed in water nanofilms on mica surface are carefully investigated by using the new atomic force microscopy imaging mode-peak force quantitative nanomechanics(PF-QNM).We find that two types of fibrils with different morphologies are formed in water nanofilm on mica.The compression elasticities of these two types of fibrils are 3.9±0.9 and 2.5±0.6GPa,respectively.The remarkable difference is possibly due to the structural discrepancy in two types of fibrils.  相似文献   

6.
The aim of this article is to present the effects of transpiration on the unsteady two-dimensional boundary layer flow of non-Newtonian fluid passing through a stretching sheet in the presence of a first order constructive/destructive chemical reaction. The upper-convected Maxwell (UCM) model is used here to characterize the non-Newtonian behavior of the fluid. Using similarity solutions, the governing nonlinear partial differential equations are transformed into ordinary ones and are then solved numerically by the shooting method. The flow fields and mass transfer are significantly influenced by the governing parameters. The fluid velocity initially decreases as the unsteadiness parameter increases and the concentration decreases significantly due to the increase in the unsteadiness. The effect of increasing values of transpiration (suction) and the Maxwell parameter is to suppress the velocity field; however, the concentration is enhanced as transpiration (suction) and the Maxwell parameter increase. Also, it is found that the fluid velocity decreases as the magnetic parameter increases; however, the concentration increases in this case.  相似文献   

7.
The photocurrent and spectral response characteristics of gallium arsenide (GaAs) are obtained by a multiinformation measurement system, and the evolution of the photocurrent versus the Cs:O flux ratio is investigated. The experimental results show that the photocurrent increases approximately exponentially after the first exposure to Cs until a maximum sensitivity is reached, the detailed evolution process and the ultimate photocurrent are different for different samples. These differences are analysed, and according to the process of coadsorption of Cs and oxygen on GaAs, an equation is presented to explain the increase of photocurrent.  相似文献   

8.
赵凤岐  咏梅 《中国物理 B》2012,21(10):107103-107103
The cyclotron mass of magnetopolarons in wurtzite In x Ga 1 x N/GaN quantum well is studied in the presence of an external magnetic field by using the Larsen perturbation method.The effects of the built-in electric field and different phonon modes including interface,confined and half-space phonon modes are considered in our calculation.The results for a zinc-blende quantum well are also given for comparison.It is found that the main contribution to the transition energy comes from half-space and interface phonon modes when the well width is very small while the confined modes play a more important role in a wider well due to the location of the electron wave function.As the well width increases,the cyclotron mass of magnetopolarons first increases to a maximum and then decreases either with or without the built-in electric field in the wurtzite structure and the built-in electric field slightly reduces the cyclotron mass.The variation of cyclotron mass in a zinc-blende structure is similar to that in a wurtzite structure.With the increase of external magnetic field,the cyclotron mass of polarons almost linearly increases.The cyclotron frequency of magnetopolarons is also discussed.  相似文献   

9.
吕冲  弯峰  贾默然  李子良  桑海波  谢柏松 《中国物理 B》2016,25(10):105201-105201
The electronic transverse transport of Lorentz plasma with collision and magnetic field effects is studied by solving the Boltzmann equation for different electron density distributions. For the Maxwellian distribution, it is shown that transport coefficients decrease as ? increases, ? is the ratio of an electron's magneto-cyclotron frequency to plasma collision frequency. It means that the electrons are possible to be highly collimated by a strong magnetic field. For the quasimonoenergetic distribution with different widths, it is found that the transport coefficients decrease greatly as εˉ decreases.In particular when the width approaches to zero the transverse transport coefficients are hardly affected by the magnetic field and the minimal one is obtained. Results imply that the strong magnetic field and quasi-monoenergetic distribution are both beneficial to reduce the electronic transverse transport. This study is also helpful to understand the relevant problems of plasma transport in the background of the inertial confinement fusion.  相似文献   

10.
The stability of three coupled Bose-Einstein condensate (BEC) solitons is investigated by the variational approach in two conventional time-independent trapping potentials. The effects of parameters of the potentials and the initial conditions of the BEC soliton system on the stationary state and self-trapping are discussed. It is found that the trapping potentials play an important role in the stability of the system and change the characteristics of the system, and there are different critical potential amplitude values corresponding to different trapping potentials and initial conditions of the BEC soliton system.  相似文献   

11.
In nanocrystalline dye-sensitized solar cells (DSSCs) the absorption of a large fraction of the incident solar radiation is important for achieving high efficiencies. We develop a model to include both the optical process and the electrochemical process. This model allows us to calculate the performance of the different optical designs (for example the different scattering layers and the different reflecting plane). It is found that appropriate optical designs can improve the performance of DSSCs greatly.  相似文献   

12.
In this paper, we investigate coherence resonance (CR) and noise-induced synchronization in Hindmarsh- Rose (HR) neural network with three different types of topologies: regular, random, and small-world. It is found that the additive noise can induce CR in HR neural network with different topologies and its coherence is optimized by a proper noise level. It is also found that as coupling strength increases the plateau in the measure of coherence curve becomes broadened and the effects of network topology is more pronounced simultaneously. Moreover, we find that increasing the probability p of the network topology leads to an enhancement of noise-induced synchronization in HR neurons network.  相似文献   

13.
Structural relaxation through isothermal annealing at temperature below glass transition is conducted on Zr46.75 Ti8.25 CU7.5Ni11Be27.5 (Vitreloy-4) bulk metallic glass. Defect concentration is correlated with the annealing time t according to differential scanning calorimetry thermalgrams. The effects of structural relaxation on mechanical properties and deformation behaviour are investigated by using instrumented nanoindentation. It is found that the as-cast alloy exhibits pronounced serration flow during the loading process of nanoindentation, and the size and number of the serrations decrease with the annealing time. The change of the deformation behaviour with structural relaxation is explained using a free volume model.  相似文献   

14.
We report a condensation behavior of silver aggregates on silicone oil surfaces. The deposited Ag atoms diffuse and aggregate on the oil surface, and then form granular clusters and ramified islands. The apparent Ag coverage of the total area increases linearly with the nominal film thickness h for h 〈 0.9nm. However, the coverage exhibits a fluctuation behavior for 1.0 nm 〈 h〈 2.5 nm. It is found that the anomalous behavior of the coverage is resulted from a characteristic material condensation process in the aggregates.  相似文献   

15.
邓礼  徐海 《中国物理 B》2016,25(1):18701-018701
Under appropriate physicochemical conditions, short peptide fragments and their synthetic mimics have been shown to form elongated cross-β nanostructures through self-assembly. The self-assembly process and the resultant peptide nanostructures are not only related to neurodegenerative diseases but also provide inspiration for the development of novel bionanomaterials. Both experimental and theoretical studies on peptide self-assembly have shown that the self-assembly process spans multiple time and length scales and is hierarchical. β-sheet self-assembly consists of three sub-processes from the microscopic to the mesoscopic level: β-sheet locking, lateral stacking, and morphological transformation. Detailed atomistic simulation studies have provided insight into the early stages of peptide nanostructure formation and the interplay between different non-covalent interactions at the microscopic level. This review gives a brief introduction of the hierarchical peptide self-assembly process and focuses on the roles of various non-covalent interactions in the sub-processes based on recent simulation, experimental, and theoretical studies.  相似文献   

16.
Hafeez Ur-Rehman 《中国物理 B》2013,22(3):35202-035202
Using the reductive perturbation method, we have derived the Kadomtsev-Petviashvili (KP) equation to study the nonlinear properties of electrostatic collisionless dust ion-acoustic solitons in the pair-ion (p-i) plasmas. We have chosen the fluid model for the positive ions, the negative ions, and a fraction of static charged (both positively and negatively) dust particles. Numerical solutions of these dust ion-acoustic solitons are plotted and their characteristics are discussed. It is found that only the amplitudes of the electrostatic dust ion-acoustic solitons vary when the dust is introduced in the pair-ion plasma. It is also noticed that the amplitude and the width of these solitons both vary when the thermal energy of the positive or negative ions is varied. It is shown that potential hump structures are formed when the temperature of the negative ions is higher than that of the positive ions, and potential dip structures are observed when the temperature of the positive ions supersedes that of the negative ions. As the pair-ion plasma mimics the electron-positron plasma, thus our results might be helpful in understanding the nonlinear dust ion acoustic solitary waves in super dense astronomical bodies.  相似文献   

17.
The epitaxial growths of GaN films and GaN-based LEDs on various patterned sapphire substrates(PSSes) with different values of fill factor(f) and slanted angle(θ) are investigated in detail.The threading dislocation(TD) density is lower in the film grown on the PSS with a smaller fill factor,resulting in a higher internal quantum efficiency(IQE).Also the ability of the LED to withstand the electrostatic discharge(ESD) increases as the fill factor decreases.The illumination output power of the LED is affected by both θ and f.It is found that the illumination output power of the LED grown on the PSS with a lower production of tan θ and f is higher than that with a higher production of tan θ and f.  相似文献   

18.
邓礼  赵玉荣  周鹏  徐海  王延颋 《中国物理 B》2017,26(12):128701-128701
Nanostructures self-assembled by cross-β peptides with ordered structures and advantageous mechanical properties have many potential applications in biomaterials and nanotechnologies. Quantifying the intra-and inter-molecular driving forces for peptide self-assembly at the atomistic level is essential for understanding the formation mechanism and nanomechanics of various morphologies of self-assembled peptides. We investigate the thermodynamics of the intra-and inter-sheet structure formations in the self-assembly process of cross-β peptide KIIIIK by means of steered molecular dynamics simulation combined with umbrella sampling. It is found that the mechanical properties of the intra-and inter-sheet structures are highly anisotropic with their intermolecular bond stiffness at the temperature of 300 K being 5.58 N/m and0.32 N/m, respectively. This mechanical anisotropy comes from the fact that the intra-sheet structure is stabilized by enthalpy but the inter-sheet structure is stabilized by entropy. Moreover, the formation process of KIIIIK intra-sheet structure is cooperatively driven by the van der Waals(VDW) interaction between the hydrophobic side chains and the electrostatic interaction between the hydrophilic backbones, but that of the inter-sheet structure is primarily driven by the VDW interaction between the hydrophobic side chains. Although only peptide KIIIIK is studied, the qualitative conclusions on the formation mechanism should also apply to other cross-β peptides.  相似文献   

19.
Depositions of Si, Ge and C atoms onto a preliminary Si (001) substrate at different temperatures are investigated by using the molecular dynamics method. The mechanism of atomic self-assembling occurring locally on the flat terraces between steps is suggested. Diffusion and arrangement patterns of adatoms at different temperatures are observed. At 900 K, the deposited atoms are more likely to form dimers in the perpendicular [110] direction due to the more favourable movement along the perpendicular [110] direction. C adatoms are more likely to break or reconstruct the dimers on the substrate surface and have larger diffusion distances than Ge and Si adatoms. Exchange between C adatoms and substrate atoms are obvious and the epitaxial thickness is small. Total potential energies of adatoms and substrate atoms involved in the simulation cell are computed. When a newly arrived adatom reaches the stable position, the potential energy of the system will decrease and the curves turns into a ladder-like shape. It is found that C adatoms can lead to more reduction of the system energy and the potential energy of the system will increase as temperature increases.  相似文献   

20.
S. A. Khan  Q. Haque 《中国物理快报》2008,25(12):4329-4332
Low frequency (in comparison to ion plasma frequency) ion-acoustic shocks and solitons in superdense electronpositron-ion quantum plasmas are studied. The quantum hydrodynamic model is used incorporating quantum Bohm forces and Fermi-Dirac statistical corrections to derive the deformed Korteweg de Vries-Burgers (dKdVB) equation in weakly nonlinear limit. The travelling wave solution of dKdVB equation is presented and results are discussed in different limits. It is found that shock height increases with increase of quantum pressure, positron concentration and dissipation. Further, it is seen that the width of soliton decreases with increase of quantum pressure  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号