首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The paper published in Chin. Phys. Lett. 26 (2009) 124211 reported a Q-switched 2-tim Tm:YAG laser that is intracavity pumped by a Nd: YAG laser with emission at 1.06μm. However, analysis of the experimental setup concludes that only the Nd:YAG laser is Q-switched, and the Tm:YAG laser operates in the free-generation regime. Therefore, Q-switch operation for the 2μm emission wavelength is not realized.  相似文献   

2.
We report a compact high power Tm,Ho:YAG laser nearly at room temperature. The laser-diode side-pumped Tm:YAG and Tm,Ho:YAG laser modules are operated in the same cavity. The laser yields 37.34 W of continuous wave output power under the temperature of 6℃, corresponding to a maximum slope efficiency of 16.7% when the output power lies from 5.1 W to 27.0 W. This is the first report on the combined Tm:YAG and Tm,Ho:YAG lasers for obtaining high power 2.1 μm laser.  相似文献   

3.
A 2.09-μm in-band pumped passively Q-switched Ho: YAG laser is demonstrated. Single layer graphene deposited on a quartz substrate is used as the saturable absorber for the Q-switched operation. The minimum pulse width of 2.11μs is obtained at an average output power of lOOmW, corresponding to a pulse repetition frequency of 57.1 kHz and the pulse energy of 1.75 μJ. The beam quality factors M^2 of the Q-switched laser are 1.18 and 1.22 in the horizontal and longitudinal direction, respectively. The optical-to-optical conversion efficiency of the passively Q-switched laser is 4.3%, which is the highest conversion efficiency in the 2 μm wavelength, to the best of our knowledge. It shows clearly that the Ho: YAG crystal is a potential gain medium in the 2 μm range for the graphene application.  相似文献   

4.
An efficient high power long wave infrared laser based on ZnGeP2 optical parametric oscillator pumped by a 2.09μm Tm:YLF/Ho:YAG laser at 10KHz pulse repetition rate is reported. The pump to idler conversion efficiency is 8% at 15.6W Ho pump power level and a quantum efficiency of 31% when the 1idler wavelength is tuned at 8.08μm. The wavelength tuning range from 8-9.1μm is also achieved by rotating the ZGP crystal.  相似文献   

5.
A high-efficiency high-power Nd:YAG laser under 885 nm laser diode (LD) pumping is demonstrated. The laser crystal is carefully designed, and the overlapping between the pump modes and the laser modes is optimized. The maximum output power at 1064 nm is 87W under the absorbed pump power 127.7 W, corresponding to a slope efficiency of 72.4% and an optical-optical efficiency of 68.1%. The optical-optical efficiency is 58.4% for the pump power emitted directly from the LD. To our best knowledge, this is the maximal optical-optical conversion efficiency obtained for the LD end-pumped Nd:YAG lasers so far.  相似文献   

6.
Lasers from a Tm:YAG slab is end-pumped by continuous-wave output of the Tm:YAG ceramic ceramic am~e reported for the t~rst time to our best knowledge. The Tm:YAG ceramic a laser diode with central wavelength 792nm. At room temperature, the maximum power is 4.5 W, and the sloping efficiency is obtained to be 20.5%. The laser spectrum is centered at 2015nm.  相似文献   

7.
The essential goal of that paper (Chin. Phys. Lett. 26(2009) 124211) was to obtain a 2μm Tm:YAG laser with short pulse output. A Q-switched technique is used to realize the short pulse output in our laser system. The idea presented by Dr. Nieolaie Pavel is right. In our work, the directly Q-switched 2μm Tm:YAG pulse laser is not realized. As a matter of fact, the Q switch is used to directly switch the 1μm Nd:YAG laser.  相似文献   

8.
A Continuous-Wave Diode-Side-Pumped Tm:YAG Laser with Output 51W   总被引:1,自引:0,他引:1       下载免费PDF全文
A compact diode-side-pumped Tm:YAG laser is presented, which can output 51 W of cw power at 2.02 μm. The Tm:YAG rod is side pumped by nine diode arrays with the central wavelength of 783nm and the with bandwidth of about 2.5 nm at 25^o C. To decrease the thermal effect on the both ends and dissipate the heat effectively, one composite Tm:YAG rod with the undoped YAG end caps and the screw threads on the side surface of the rod is used as the laser crystal. The maximum optical-to-optical conversion efficiency of the 2.02-μm laser output is 14.2%, with a slope effciency of 26.8%  相似文献   

9.
A cw high efficient Ho:YAI03 laser pumped by 1.91 μm diode-pumped Tm:YLF laser at room temperature is realized. The maximum output power reaches 8.5 W when the incident pump power is 15.6 W. The slope efficiency is 63.7%, and the Tm:YLF to Ho:YAP optical conversion efficiency is 54.5%. The laser wavelength is 2118.3nm when the transmission of output coupler is 30%. The beam quality factor is M2 -1.39 measured by the traveling knife-edge method.  相似文献   

10.
A cryogenic and room-temperature diode pumped Tm,Ho:YVO4 microchip laser with 0.5 mm crystal length lasing around 2μm is demonstrated for the first time to our knowledge. Under cryogenic temperature of 77 K, as much as 1.2 W output and slope efficiency of 35% with respect to absorbed pump power are obtained. At temperature of 5℃ the maximum output power of 48mW is obtained at an absorbed pump power of 503 mW, representing a 9.5% optical to optical conversion efficiency. In addition, as much as 8 mW single-frequency output lasing at 2052.6 nm is achieved at room temperature of 15℃.  相似文献   

11.
We demonstrate a high-efficiency continuous-wave Tm: YAG ceramic laser pumped with a Ti:sapphire laser. An output power up to 860mW is obtained under an absorbed pump power of 2.21 W at 785nm, corresponding to a slope efficiency of 42.1% and optical to optical efficiency of 22%. The measured central wavelength is 2012nm.  相似文献   

12.
This paper reports that the Tm^3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The roomtemperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Ω2=9.3155×10^-20 cm^2, Ω4=8.4103×10^-20 cm^2, Ω6=1.5908×10^-20 cm^2, the fluorescence lifetime is calculated to be 2.03 ms for ^3F4 → ^3H6 transition, and the integrated emission cross section is 5.81×10^-18 cm^2. Room-temperature laser action near 2μm under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuouswave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06μm with spectral bandwidth of -13.6 nm.  相似文献   

13.
A high power diode-pumped diffusion-bonded Tm:YLF laser operating at 1889.5nm with a FWHM linewidth of less than 0.1 nm is reported. A Brewster plate and two Fabry-Perot etalons are inserted in the laser cavity for spectral narrowing and stabilization. Under an incident pump power of 136.8 W, 46.1 W of output power is achieved, corresponding to an optical-to-optical conversion efficiency of 33.7% and a slope efficiency of 42.8%. The laser wavelength shift of only 0.07nm with the incident pump power from 20.1 W to 136.8W is observed. The M2 factor at maximum output power is calculated to be 2.3 in the x-axis and 2.0 in the y-axis, respectively.  相似文献   

14.
We demonstrate a stable single longitudinal mode Tm:YAG ceramic laser operating at a single wavelength of 2012.1 nm. The single-longitudinal-mode Tin: YAO ceramic laser is obtained by employing volume Bragg grating as one cavity mirror and inserting a Fabry-Perot etalon into the laser cavity. A maximum single longitudinal mode output power of 165roW with a slope efficieney of 6.6% is achieved under the pump power of 5.02 W. The laser has a beam quality of M2 = 1.18 at the maximum single longitudinal mode output power.  相似文献   

15.
We report an efficient mid-infrared optical parametric oscillator (OPO) pumped by a pulsed Tm,Ho-codoped GdVO4 laser. The IO-W Tm,Ho:GdVO4 laser pumped by a 801 nm diode produces 20ns pulses with a repetition rate of lO kHz at wavelength of 2.0481μm. The ZnGeP2 (ZGP) OPO produces 15-ns pulses in the spectral regions 3.65-3.8μm and 4.45-4.65μm simultaneously. More than 3 W of mid-IR output power can be generated with a total OPO slope efficiency greater than 58% corresponding to incident 2μm pump power. The diode laser pump to mid-IR optical conversion efficiency is about 12%.  相似文献   

16.
By using a pump recycling configuration, the maximum power of 8.1 W in the wavelength range 1.935-1.938 μm is generated by a 5-ram long Tm:YAIOa (4 at.%) laser operating at 18℃ with a pump power of 24 W. The highest slope efficiency of 42% is attained, and the pump quantum efficiency is up to 100%. The Tm:YAlO3 laser is employed as a pumping source of singly-doped Ho(1%):GdV04 laser operating at room temperature, in which continuous wave output power of greater than 0.2 W at 2.05/μm is achieved with a slope efficiency of 9%.  相似文献   

17.
We demonstrate a high efficiency multi-kW diode-side-pumped Nd:YAG laser. High cooling efficiency of the diode-side-pumped module in the laser is achieved. The middle portion of the Nd:YAG rod in the module is cooled by a coolant jet with screwed side surface, and the end-caps of the rod without screwed side surface are cooled by Au coated on the surface. The thermal effect of the laser rod is reduced, which leads to high output power with high optical-optical conversion efficiency. By using three identical Nd:YAG laser modules, an output power of 4.2 kW and beam quality of 58 mm・mrad with an optical-optical efficiency of 35% at 1064 nm is obtained in a laser oscillator. By using four identical Nd:YAG laser modules, an output power of 3.1 kW and beam quality of 17 mm・mrad with an optical-optical efficiency of 25.8% is demonstrated in a master oscillator power-amplifier system.  相似文献   

18.
We demonstrate the continuous wave p-polarized single longitudinal mode (SLM) operation of an Er:YAG laser at 1617.6nm pumped by a diode-laser with three inserted Fabry-Perot (FP) etalons at room temperature. The Brewster angle inserted FP is applied to obtain the p-polarized laser. For free running, the maximum output power is 570 m W with a pump power of 12.5 W. An incident pump power of 12.5 W is used to generate the maximum p-polarized single longitudinal mode output power of 78.5 m W, corresponding to a slope efficiency of 1.6% and an optical-to-optical efficiency of 0.61%. The beam quality M2 is measured to be 1.15 at the highest SLM output power. This stable polarized SLM oscillation is encouraging due to its application for an injection-locked system used as a master laser.  相似文献   

19.
A laser diode-pumped high-efficiency widely tunable Tm:YAP laser with excellent comprehensive properties is reported.The output power is stable at a given pump power.Under the absorbed pump power of 12.95 W,the maximum output power at 2,010 nm is 5.16 W,corresponding to a slope efficiency of 45.5%.The generated beam profile is close to the Gaussian TEM00 near the maximum pump power.Furthermore,the laser working wavelength can be continuously tuned through optimization from 1,894 to 2,066 nm,which is the widest tunable range for Tm:YAP lasers to date.  相似文献   

20.
We report a compact Ho:LuAG ceramic laser intracavity pumped by a diode-pumped Tm:YAG ceramic laser. The laser oscillation is accomplished by using a common linear cavity configuration containing Tm:YAG and Ho:LuAG ceramics. The 1.0 at.% Ho:LuAG ceramic laser yields 1.15 W of maximum output simultaneously at 2094 and 2100 nm with a beam quality factor of M2-2.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号