首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Nb as a support modifier on the NiMo6/Al2O3–Nb2O5(x) (x?=?0, 1, 4, and 8?wt% Nb) catalysts was studied. The supports were prepared by one-pot coprecipitation from soluble precursors. The XRF analysis of the catalysts showed that the contents of Mo and Ni increased slightly with the presence of Nb. Micropore area and pore volume augmented importantly with Nb content, resulting in pore diameters between 5.3 and 9.3?nm. XPS analysis showed that the presence of Nb decreases the active metal–support interaction, improving the Mo and Ni sulfidation degree. The Raman spectra of sulfided catalysts suggested an increase in the number of layers of MoS2 in the presence of Nb. Generally, the thiophene HDS activity at normal pressure of sulfided NiMo6/Al2O3–Nb2O5(8) was greater than that of the sulfided catalysts with x?=?0, 1, and 4?wt% Nb, which can be attributed to the Nb promotion that would have an effect on the type of active site (Brønsted or Lewis acidic sites), since the number of sites by CO chemisorption for sulfided NiMo6/Al2O3–Nb2O5(x) did not show correlation with the catalytic activity. The high-pressure HDS activity of dibenzothiophene was also greater in the presence of Nb, and the hydrogenation route was preferred for the Nb-promoted solid, while the unpromoted one showed a larger yield of direct desulfurization products.  相似文献   

2.
BaTiO3 (BTO) and BaTi1?xMnxO3 (x?=?0.25, 0.50, 0.75?mol%) ceramic materials have been prepared by the sol–gel combustion method. X-ray diffraction (XRD) has been carried out to characterize the phase purity and crystal structure of the prepared compounds, and all XRD patterns suggest tetragonal structure with the phase group of P4mm. The variation in the estimated lattice parameters confirms the incorporation of Mn atoms at Ti site of BTO. Raman spectroscopy studies under various temperatures suggest a phase transition from tetragonal to cubic phase at ~433?K, identified by a distinct Raman mode at 308?cm?1. As Raman modes are getting softened by Mn doping, phase transition temperature of the Mn-doped compounds is significantly decreased from 473?K (x?=?0%) to 433?K (x?=?0.75%). Dielectric properties such as permittivity and dielectric loss as the function of frequency under various temperatures have two distinct dielectric anomalies (i) at 393?K associated to tetragonal to cubic phase transition and (ii) at 550?K due to oxygen vacancy defect in the samples. Observation of weak ferromagnetism at 2, 300, and 400?K in the M (H) and ZFC-FC curve, suppose its origin due to an intriguing exchange interaction between Mn and oxygen vacancies.  相似文献   

3.
Flower-like ceria (CeO2) architectures consisting of well aligned nanosheets were first synthesized by a glycol solvothermal method. The size of CeO2 architectures is about 5?μm in width and 10?μm in length, with the nanosheets thickness below 100?nm. Subsequently, the adsorbed Ag ions on the surface of CeO2 were in situ reduced to form Ag nanoparticles (NPs), leading to the fabrication of Ag/CeO2 hybrid architectures (HAs). The formed Ag NPs with sizes of 20–40?nm were uniformly loaded on the surface of the CeO2 sheets. The antibacterial properties of Ag/CeO2 HAs against Gram-negative E. coli and Gram-positive S. aureus were evaluated by minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and a filter paper inhibition zone method. The results demonstrated that Ag/CeO2 HAs displayed excellent antibacterial activity toward S. aureus and E. coli, which were attributed to the synergistic antibacterial effect between Ag NPs and CeO2 in HAs. Here, CeO2 nanoflowers as a new substrate could restrict Ag NPs aggregations and improve their antibacterial activities. Therefore, the resulted Ag/CeO2 HAs would be considered as a promising antibacterial agent.  相似文献   

4.
In this study, the effective TiO2/Ag composite antibacterial aerogel powder is prepared by facile sol–gel method and ethanol supercritical technology. The surface morphology, structural properties, and chemical components are monitored by scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and energy disperse?spectroscopy (EDS). Meanwhile, absorbance spectra and specific surface area of TiO2/Ag composite aerogel are characterized by UV-Vis spectra and Brunauer–Emmett–Teller. The TiO2/Ag composite aerogel with Ti/Ag molar ratios of 10:1, 30:1, 50:1 are measured for its antibacterial property by using Escherichia coliform (E.coli) and Staphylococcus aureus (S. aureus). The results show that the size of TiO2 and Ag nanoparticles are 40?nm and 25?nm, respectively. Simultaneously, the obtained composite aerogel with a porous structure possessed a surface area of 148?m2/g, an average pore size 11.5?nm, and a pore volume 0.39?cm3/g. With the increase of Ag content, the antibacterial properties of composite aerogel are greatly improved compared with pure TiO2 aerogel. When Ag/Ti molar ratios was 1:10, the highest antibacterial rate can up to 99%, and the inhibition bands of E. coli and S. aureus are 23?mm and 19?mm, respectively.
Schematic representation of growth mechanism of TiO2/Ag composite aerogel (a) and antibacterial performance test (b, c)
  相似文献   

5.
Perovskite-related oxide Tm x Cu3V4O12 (space group Im \(\bar 3\), Z = 2, a = 7.262?7.273 Å) with vacancies in the cationic sublattice has been prepared for the first time under barothermal conditions (p = 7.0?9.0 GPa, T = 900?1100°C). Electric resistivity (10–300 K) and magnetic susceptibility (0–300 K) were studied as a function of temperature. Tm x Cu3V4O12 is shown to have a metallic conductivity and paramagnetism.  相似文献   

6.
Bismuth ferrite (BiFeO3) nanopowder have been successfully synthesized for the first time via a microwave-assisted sol-gel combustion method by using citric acid as fuel. The resulting nanopowder was characterized using FT-IR, TG-DTA, XRD, EDX, VSM, SEM, and UV-Vis DRS. A ferromagnetic hysteresis loop with a saturation magnetization (MS) of 0.66?emu?g?1 has been observed at room temperature in the sample. The optical properties of the nanosized BiFeO3 showed its small band gap (=2.08?eV) indicates a possibility of utilizing much visible light for photocatalysis.  相似文献   

7.
BaM hexaferrites substituted with both Ca2+ and Mg2+ ions, namely, Ba1-2×CaxMgxFe12O19 (0.0?≤?x?≤?0.1), synthesized during a sol–gel auto-combustion route. The hexaferrite phase and morphology of all samples were investigated using X-ray powder diffraction, a field emission scanning electron microscope, a high-resolution transmission microscope, and Fourier transform infrared spectroscopy. In addition, an M-type hexagonal structure was confirmed using XRD for all samples. FE-SEM and TEM revealed the shape of the hexagonal plate. Measurements of the magnetization versus the field M(H) of Ba1-2×CaxMgxFe12O19 (0.0?≤?x?≤?0.1) nanohexaferrites were conducted at 300 and 10?K. A hard-ferrimagnetic behavior at both 300 and 10?K was noted for the different products produced. The squareness ratio indicates the uniaxial anisotropy for various products. The deduced values of saturation magnetization (Ms) in all substituted samples are higher than in the pristine sample (x?=?0). The Ba0.96Ca0.02Mg0.02Fe12O19 nanosized hexaferrite showed the highest values of Ms, remanence Mr, magneton number (nB), and magnetocrystalline anisotropy constant (Keff). In contrast, the values of the coercive field (Hc) and intrinsic coercivity (Hci) diminish with the increase in the amount of the substituted Ca and Mg elements.  相似文献   

8.
The aim of this work was an investigation of structural and electrical properties of ZnO/Zn2-xFexTiO4 (x?=?0.7, 1, 1.4) powders. The compounds obtained by sol-gel method are characterized by several techniques: X-ray diffraction (XRD), N2 adsorption–desorption isotherms, scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), electrical and dielectrical measurements. The XRD, SEM and XPS analysis confirmed the formation of ZnFeTiO4 inverse spinel structure. The electrical and dielectrical properties of ZnO/Zn2-xFexTiO4 (x?=?0.7, 1, 1.4) were measured by impedance spectroscopy, revealing a decrease in the electrical conductivity and the dielectric constant with Fe content.  相似文献   

9.
A continuous solid solution LaMn1?y Cr y O3 with an orthorhombic structure is found to exist in the range of 0.0 ≤ y ≤ 1.0. An orthorhombic solid solution La1?x Sr x CrO3 exists in the range of 0.0 ≤ x ≤ 0.1. The stability boundaries are determined for the perovskite phase La1?x Sr x Mn1?y Cr y O3. An isobaric-isothermal section LaMnO3-SrMnO3-SrCrO4-LaCrO3 of the system La2O3-SrO-Mn3O4-Cr2O3 in air at 1100°C is designed.  相似文献   

10.
Phase pure, mesoporous, and crystalline V2O5 is synthesized by acid hydrolysis technique and subsequently heat treatment is carried out at 450, 500, 550, and 600?°C in air. The as-synthesized and heat-treated powders are thoroughly studied by X-ray diffraction, electron microscopy, dynamic light scattering, and spectroscopic techniques. A unique morphological tuning of V2O5 powders from as small as ~80?nm tiny nanorod to as large as a ~2.5?μm hexagonal grain as microstructural unit blocks is observed. A qualitative mechanism is suggested for particle growth. Further, the powders are pelletized and subsequently sintered in air at the same temperatures of 450, 500, 550, and 600?°C at which the powders were heat treated. Finally, nanomechanical properties of bulk pelletized V2O5 such as nanohardness and Young’s modulus are also evaluated by nanoindentation technique at nine different loads e.g., 10, 30, 50, 70, 100, 300, 500, 700, and 1000?mN.  相似文献   

11.
The heat capacities of Pb2V2O7 and Pb3(VO4)2 as a function of temperature in the range 350–965 K have been studied by the differential scanning calorimetry method. The CP = f(T) curve for Pb2V2O7 is described by the equation Cp = (230.76 ± 0.51) + (73.60 ± 0.50)×10-3T ? (18.38 ± 0.54)×105T-2 in the entire temperature range. For Pb3(VO4)2, there is a well-pronounced extreme point in the CP = f(T) curve at T = 371.5 K, which is caused by the existence of a structural phase transition. The thermodynamic properties of the oxide compounds have been calculated.  相似文献   

12.
Perovskite-like nonstoichiometric oxide Sm x Cu3V4O12 (space group Im \(\bar 3\), Z = 2, a = 7.276?7.314 Å) with cationic vacancies and a homogeneity region was prepared barothermally (p = 6.0?9.0 GPa, T = 700?1100°C) for the first time. Structural and isotropic thermal parameters, as well as bond lengths and bond angles, were determined. The compound has metal-type conductivity and paramagnetic properties.  相似文献   

13.
Herein, porous Li3V2(PO4)3/C microspheres made of nanoparticles are obtained by a combination of sol spray-drying and subsequent-sintering process. Beta-cyclodextrin serves as a special chelating agent and carbon source to obtain carbon-coated Li3V2(PO4)3 grains with the size of ca. 30–50?nm. The unique porous structure and continuous carbon skeleton facilitate the fast transport of lithium ion and electron. The Li3V2(PO4)3/C microspheres offer an outstanding electrochemical performance, which present a discharge capacity of 122?mAh?g?1 at 2?C with capacity retention of 96% at the end of 1000 cycles and a high-rate capacity of 113?mAh?g?1 at 20?C in the voltage window of 3.0–4.3?V. Moreover, the Li3V2(PO4)3/C microspheres also give considerable cycling stability and high-rate reversible capacity at a higher end-of-charge voltage of 4.8?V.  相似文献   

14.
The phase composition has been studied and an equilibrium phase diagram has been designed for the Al2O3-Li2O-R2O5 (R = Ta or Nb) systems in the subsolidus region up to 1000°C and 85 mol % Li2O. New phases with the composition Li1+x Al1?x O2?x , where x = 0–0.67, have been found.  相似文献   

15.
The subsolidus region of the Ag2MoO4-MgMoO4-Al2(MoO4)3 ternary salt system has been studied by X-ray phase analysis. The formation of new compounds Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 (0 ≤ x ≤ 0.4) and AgMg3Al(MoO4)5 has been determined. The Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 variable-composition phase is related to the NASICON type structure (space group R \(\bar 3\) c). AgMg3Al(MoO4)5 is isostructural to sodium magnesium indium molybdate of the same formula unit and crystallizes in triclinic system (space group P \(\bar 1\), Z = 2) with the following unit cell parameters: a = 9.295(7) Å, b = 17.619(2) Å, c = 6.8570(7) Å, α = 87.420(9)°, β = 101.109(9)°, γ = 91.847(9)°. The compounds Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 and AgMg3Al(MoO4)5 are thermally stable up to 790 and 820°C, respectively.  相似文献   

16.
Zinc gallate (ZnGa2O4) nanopowders doped with Cr3+ (1?mo%) were synthesized by the citric acid assisted sol–gel method. The influence of annealing temperature, structural, morphological, and optical properties of ZnGa2O4: Cr3+ (1?mol%) nanosized particles were investigated. The X-ray diffraction (XRD) spectra indicated that the nanoparticles are cubic in structure and the annealing temperature did not influence any c in structure. The average crystallite size of ZnGa2O4: Cr3+ nanoparticles were observed to increase from 11.85 to 30.88?nm as the annealing temperature increased from 600 to 1000?°C. The scanning electron microscopy (SEM) showed nearly spherical nanostructures that change in size with annealing temperature. The high resolution transmission electron microscope (HR-TEM) images show well resolved lattice fringes which is an indications of highly crystalline samples. Ultraviolet–visible (UV–Vis) measurement show decrease in reflectance in visible region and energy band gap was found to decrease with annealing temperature. The photoluminescence (PL) intensity was found to be maximum for sample annealed at high temperature (1000?°C) and least with sample annealed at low temperature (600?°C). An increase in annealing temperature leads significantly increment in PL intensity. The degree of crystallinity also increased with annealing temperature from XRD, SEM, and HR-TEM analysis. The photoluminescence lifetimes, particle size, and emission spectra are comparable with reports on bioimaging applications.  相似文献   

17.
A new chemical approach for the fabrication of Fe3O4 embedded ZnO magnetic semicondutctor composite is reported. The method consists in increasing the pH of the synthesis solution by the thermal decomposition of urea instead of using common alkaline agents, such as NaOH and NH4OH. The material (Fe3O4@ZnO) was used as a platform for the fabrication of highly dispersed gold nanoparticles (~5?nm). The catalytic efficiency of the material, Fe3O4@ZnO@Au, was tested in the photodegradation of Rhodamine-B solutions, and prominent catalytic efficiency, stability, and recycling were achieved. A single portion of the catalyst could be used up to five times without significant loss of activity and its photodegradation efficiency was considered high even after the 12th cycle (56%). Catalyst separation after each batch could be easily achieved because of the intrinsic magnetic property of the material. Leaching monitoring of free Zn species during the fabrication of the catalyst suggests that the use of urea decreased substantially the formation of non-magnetic-semiconducting species and provided a higher mass yield of the magnetic composite compared to an analogous protocol using NaOH. The catalyst was also characterized by detailed structural and chemical analyses, such as transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and vibration sample magnetometer (VSM).  相似文献   

18.
TiO2/WO3 nanocomposite with nanodisk morphology was prepared and successfully used as a photocatalyst. The nanocomposite was obtained via sonochemical and hydrothermal methods, using pomegranate juice as a capping agent. The products were characterized by FE-SEM imaging, BET, EDAX spectroscopy, X-ray diffraction, DRS, and FT-IR spectroscopy. TiO2/WO3 nanocomposite showed high sensitivity to absorb visible light in compared to TiO2. In an optimized condition, the yield of the aerobic photocatalytic oxidation of benzyl alcohol derivatives reached to 65% for the TiO2/WO3 nanocomposite, while the conversion percent of the derivatives was less than 8% and 50% on the TiO2 and WO3 nanoparticles, respectively. Experimental results were supported by density functional theory (DFT) calculations. The DFT results in several solvents of different dielectric constants, confirmed the strong dependence of light absorption and photocatalytic activity to adsorption energy of the substrates on the surface of the nanoparticles (Ead). In addition, the theoretical results showed an inverse correlation between the adsorption energy of benzyl alcohol and its conversion percent, accordance to the experimental trend.  相似文献   

19.
Two series of TiO2 thin films were prepared based on soluble precursor powders: The first run originated directly from an alcohol-based coating solution whereas for the second batch the aqueous precursor powder sol had previously undergone a hydrothermal treatment. The respective microstructures were characterized by electron microscopy, the phase evolution was monitored by X-ray diffraction. Ellipsometric porosimetry (EP) was employed to reveal changes of porosity and pore size induced by thermal treatment of the films.
Soluble TiO2 precursor powders were hydrothermally treated to yield coating solutions. Films from these sols were compared with those directly obtained by dissolving the precursor powders. Results indicate that crystallization to anatase is induced under hydrothermal conditions and the resulting films mostly maintain their porosity throughout thermal treatment. In contrast to that coatings processed from as-dissolved precursor powders undergo more extensive densification
  相似文献   

20.
The Sm2S3-Sm2O3 phase diagram was studied by physicochemical methods of analysis from 800 K up to melting. Two oxysulfides are formed in the system: Sm10S14O with tetragonal crystal structure (space group I41/acd; unit cell parameters: a = 1.4860 nm, c = 1.9740 nm; microhardness: H = 4700 MPa; solid decomposition temperature: 1500 K) and Sm2O2S with hexagonal structure (space group P-3m1; a = 0.3893 nm, c = 0.6717 nm; H = 4500 MPa; congruent melting temperature: 2370 K). Within the extent of the Sm2O2S-based solid solution (61–70 mol % Sm2O3) at 1070 K, a singular point appears at the compound composition on property-composition curves. The eutectic coordinates: 23 mol % Sm2O3 and 1850 K; 80 mol % Sm2O3 and 2290 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号