首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Powders of Sm0.6Sr0.4CoO3-δ and La0.6Sr0.4CoO3-δ were synthesized using wet chemical technique. Structural and surface properties of synthesized materials were studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), IR spectroscopy, and scanning electron microscopy (SEM). The influence of pH on the phase state, chemical composition, morphology, and fractal dimension of the synthesized powders were investigated. It was found that the change of pH has the influence on phase composition of synthesized powders. The increase of solution pH allows one to obtain homogeneous samples at lower temperatures down to 900–950?°C.  相似文献   

2.
Bismuth ferrite (BiFeO3) nanopowder have been successfully synthesized for the first time via a microwave-assisted sol-gel combustion method by using citric acid as fuel. The resulting nanopowder was characterized using FT-IR, TG-DTA, XRD, EDX, VSM, SEM, and UV-Vis DRS. A ferromagnetic hysteresis loop with a saturation magnetization (MS) of 0.66?emu?g?1 has been observed at room temperature in the sample. The optical properties of the nanosized BiFeO3 showed its small band gap (=2.08?eV) indicates a possibility of utilizing much visible light for photocatalysis.  相似文献   

3.
Herein, the catalytic properties of the cerium (IV) salt, cerium (IV)-sandwiched polyoxometalate (POM) and cerium (IV)-sandwiched polyoxometalate intercalated in layered double hydroxides (LDHs) in the H2O2-based green oxidation reactions have been evaluated. These cerium (IV)-based systems were applied as homogeneous and heterogeneous catalysts for the oxidation of pyridines. Despite the fact that the cerium (IV)-sandwiched polyoxometalate as a homogeneous reaction system gives good results, there are some disadvantages in recovery and reusability process. To overcome these problems, new nano catalyst was synthesized by intercalation of the Cerium (IV)-sandwiched polyoxometalate into tris(hydroxymethyl) aminomethane-modified layered double hydroxides (Tris-LDH-CO3). The as-prepared nanocomposite was characterized and used as an effective heterogeneous catalyst for the oxidation of pyridines under mild conditions in the presence of H2O2 as an oxidant. The new heterogeneous nanocomposite can be recovered and reused easily from the reaction media at least ten times without significant decrease in catalytic activity.  相似文献   

4.
In this research, LiMn2O4 nanopowders were synthesized by the sol–gel method using gelatin as a chelating agent. Three categories of samples with various weight ratios of gelatin to the final product, 1:1, 2:1, and 3:1, have been synthesized. The produced gel was dried in a controllable oven with a slow slope up to 250??C and calcined at different temperatures. The results show that the amount of gelatin affects the structural properties such as the formation temperature of the spinel structure, the homogeneity of the size distribution and size of the particles. The sample with the weight ratio of 3:1 of gelatin to the final product has a lower temperature for the formation of LiMn2O4 with more homogeneity, and smaller particles with the average size of 70?nm, which is calcined at 750??C, while the samples with the weight ratios 2:1 and 1:1 have the average particle sizes of 75 and 89?nm, respectively.  相似文献   

5.
Zirconia aerogel monolith was prepared by a facile co-hydrolysis method, which adopts ZrOCl2 as the precursor and water glass (Na2SiO3) as the gel initiator. ZrO2 aerogel was formed by rational controlling of the hydrolysis rate of Zr4+ ions by Na2SiO3. The obtained aerogel consists of ZrO2 nanoparticles surrounded by amorphous SiO2 nano shell. The density and the surface area can be well tuned by adjusting the ratio of ZrOCl2 to Na2SiO3. The in-situ introduced SiO2 nano shell layer acts as the particle boundary reinforcement phase, which not only strengths the ZrO2 particle connections to form monolith, but also significantly mitigates the sintering of ZrO2 nanoparticles at high temperature. As a result, the zirconia aerogel prepared by such method could maintain its nanoporous microstructure up to 1000?°C.  相似文献   

6.
Barium zirconium titanate (Ba(Zr x Ti1?x)O3, BZT) super smooth thin films are synthesized through modified sol-gel dip coating route on fluorine-doped tin oxide substrates with a suitably low calcination temperature. The Fourier tranformed infrared spectroscopy proves that impurities and starting materials are completely removed in the calcination process. Crystallographic phases of the samples are identified by the X-ray diffractometry and confirms that all samples are crystallized into a single perovskite phase. Introducing zirconium into the structure causes a reduction in dielectric constant of barium titanate. The optical properties of the films are also investigated. The results indicate that all samples are highly transparent and zirconium reduces the absorption coefficient. Moreover, the band gap energy of barium titanate increases when doped with zirconium and the highest band gap energy of about 3.71?eV along with the lowest dielectric constant of 850 at frequency of 100?kHz are obtained in 15 at.% zirconium-doped sample.  相似文献   

7.
New silica-based particles embedding iron were synthesized following a freeze-drying-assisted sol–gel route. The samples were preliminary characterized in view of potential applications as theranostic magnetic resonance imaging (MRI) contrast agents and for hyperthermia treatment. The structural changes induced by iron addition were studied by X-ray diffraction, Fourier transform infrared and electron paramagnetic resonance spectroscopies. The addition of Fe2O3 impedes the SiO2 crystallization denoting that iron plays, in this case, the role of a glass network stabilizer. The composition on surface and nearby was analyzed by X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy both before and after samples immersion in simulated body fluid. The results suggest the nominal composition with 5?mol% Fe2O3 added to 0.7SiO2?0.3Na2O matrix of interest for further investigations as potential MRI contrast agent and hyperthermia vector.  相似文献   

8.
MgF2 coating solutions were solvothermally treated at 160?°C for different time periods, this procedure induced crystallization and particle growth. Antireflection coatings prepared on glass from these solutions were compared to films derived from untreated precursor material. Ellipsometric porosimetry (EP) was employed to characterize structural features of coatings on glass as function of annealing temperature. Based on precursor solutions that had undergone solvothermal treatment antireflective coatings with a peak transparency exceeding 99% were prepared on PMMA substrates.
Solvothermal treatment of MgF2 precursor solutions results in crystallization of particles that can directly be applied to PMMA substrates for λ/4 antireflective films.
  相似文献   

9.
The aim of this work was an investigation of structural and electrical properties of ZnO/Zn2-xFexTiO4 (x?=?0.7, 1, 1.4) powders. The compounds obtained by sol-gel method are characterized by several techniques: X-ray diffraction (XRD), N2 adsorption–desorption isotherms, scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), electrical and dielectrical measurements. The XRD, SEM and XPS analysis confirmed the formation of ZnFeTiO4 inverse spinel structure. The electrical and dielectrical properties of ZnO/Zn2-xFexTiO4 (x?=?0.7, 1, 1.4) were measured by impedance spectroscopy, revealing a decrease in the electrical conductivity and the dielectric constant with Fe content.  相似文献   

10.
Two series of TiO2 thin films were prepared based on soluble precursor powders: The first run originated directly from an alcohol-based coating solution whereas for the second batch the aqueous precursor powder sol had previously undergone a hydrothermal treatment. The respective microstructures were characterized by electron microscopy, the phase evolution was monitored by X-ray diffraction. Ellipsometric porosimetry (EP) was employed to reveal changes of porosity and pore size induced by thermal treatment of the films.
Soluble TiO2 precursor powders were hydrothermally treated to yield coating solutions. Films from these sols were compared with those directly obtained by dissolving the precursor powders. Results indicate that crystallization to anatase is induced under hydrothermal conditions and the resulting films mostly maintain their porosity throughout thermal treatment. In contrast to that coatings processed from as-dissolved precursor powders undergo more extensive densification
  相似文献   

11.
Novel La-doped Bi2WO6 composites were successfully prepared via a facile solvothermal method and well characterized by X-ray diffraction, Brunner?Emmet?Teller measurements, scanning electron microscopy, transmission electron microscopy/high-resolution, energy dispersive spectrometry, X-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, and Fourier transform infrared spectroscopy. The photocatalytic activity of modified catalysts was evaluated by degrading tetracycline hydrochloride under visible light (450?W Xe lamp irradiation). It was found 5%La-Bi2WO6 had the highest light-absorption ability, great morphology, and microstructures. The La dopant enlarged surface area and increased crystal defects, which may enhance the optical absorption activity and inhibit the recombination of the photo-generated charge carrier, respectively. After 150?min illumination, the photocatalysts that 5%La-Bi2WO6 and pure Bi2WO6 exhibited the best and worst photocatalytic performance, respectively (96.25% vs. 88.92%).  相似文献   

12.
Zinc doped tin oxide nanoparticles were synthesized by employing sol–gel method assisted with different surfactants namely cetyl trimethyl ammonium bromide (CTAB), hexamine and polyethylene glycol 400 (PEG-400). The synthesis of uniform distribution of spherical Zn-SnO2 nanoparticles in presence of PEG-400 was optimized. The synthesized Zn-SnO2 nanoparticles were characterized by employing standard characterization techniques. X-ray diffraction results confirmed the product high-quality crystalline formation. The photoluminescence peaks appeared at 360?nm revealed the recombination of electron and hole from band to band emission of SnO2 optical properties. The vibrational properties of Zn-SnO2 nanoparticles were confirmed by both Raman and infra red spectra. The spherical morphology and nano sized product was evident in 200?nm scale SEM images. The cyclic voltammetry result of the product Zn-SnO2 assisted PEG-400 exhibited the specific capacitance value of 312.7?F/g at scan rate of 10?mV/s and revealed the superior electrochemical properties. Moreover, the EIS and GCD studies also revealed the good supercapacitor nature with specific capacitance of 132.1?F/g at current density of 1?A/g for the product Zn-SnO2 (PEG-400).
Diagrammatic representation of Zn doped SnO2 synthesis by sol-gel method with enhanced specific capacitance of 132.1?F/g at 1?A/g for Zn-SnO2 (PEG-400).
  相似文献   

13.
The simple and effective synthesis of well-defined organosilica hollow nanospheres (OHNSs) for fundamental research and practical applications is still a significant challenge. In this work, a facile “cationic surfactant-induced selective etching” strategy was developed for the fabrication of hollow thiocyanatopropyl silsesquioxanes (thiocyanatopropyl-SQ), mercaptopropyl silsesquioxane (mercaptopropyl-SQ) from cyanoethyl-SQ@thiocyanatopropyl-SQ and cyanoethyl-SQ@mercaptopropyl-SQ, respectively. The experiments demonstrated that cetyltrimethylammonium bromide (CTAB) had remarkable influence on the formation of hollow structure and could accelerate the etching process significantly. A formation mechanism initiated by the adsorption of cationic surfactant followed by the etching of inner core with NH3·H2O was proposed. Hollow thiocyanatopropyl-SQ and mercaptopropyl-SQ with various shell thickness could be prepared by manipulating the amount of CTAB. And large-scale OHNSs were obtained at appropriate concentration of CTAB through this strategy. Moreover, this strategy might be further extended to fabricate OHNSs with other worthy functional groups.  相似文献   

14.
Boron Nitride (BN) particles were functionalized with vinyl-trimethoxysilane (VTMS) and incorporated into a hybrid polymer (ORMOCER®) resin. The thermal conductivity and mechanical properties of the resulting composite were compared to materials prepared using unmodified particles. Results indicate that the chemical bonding between grain surface and ORMOCER® matrix has a pronounced effect on the final performance of the respective compounds.
The surface of BN particles was functionalized prior to their incorporation into a hybrid polymer (ORMOCER®) matrix, thermal, electrical and mechanical properties of the resulting composites were characterized.
  相似文献   

15.
ZrC–ZrO2 composite ceramic microspheres were prepared by internal gelation combined with carbothermic reduction using fructose as a chelating agent and carbon source. Fructose in the precursor solution formed complex with zirconium ions, which was conducive to the refining of the microstructure of the sintered composite. ZrC–ZrO2 composite with ZrC content as high as 60?wt% could be prepared.
In this paper, fructose was used as a chelating agent and an organic carbon source to prepare ZrCO microspheres by internal gelation and carbothermic reduction. The fructose in the precursor solution could form complex with zirconium ions, which was conducive to the refining of the microstructure of the sintered composite. ZrC–ZrO2 composite with crystal size of ZrO2 and ZrC in nanometer range and ZrC content as high as 60?wt% could be successfully prepared.
  相似文献   

16.
Since the late 1960s, ceric hydrogen phosphates have attracted the attention of scientists due to remarkable ion exchange, sorption, proton-conduction and catalytic properties. In this work, through the application of various solvents, we, for the first time, have obtained monolithic aerogels based on ceric hydrogen phosphates with high porosity (~99%) and extremely low density (~10?μg/cm3). The composition and structure of aerogels were thoroughly studied with XRD, TEM, SEM, XPS, low temperature nitrogen adsorption methods, TGA/DSC, Fourier-transform infrared spectroscopy (FTIR) and small-angle neutron scattering (SANS). The aerogels were found to belong to the fibrous macroporous aerogels family.  相似文献   

17.
One of the promising candidates to replace the chromate conversion coatings for corrosion protection of aluminium alloy AA7075 are the hybrid sol–gel coatings. In the present work hybrid silica sol–gel coatings doped with cerium nitrate were prepared and characterized. Tetraethoxysilane (TEOS) and 3-glycidoxypropyl-trimethoxysilane (GPTMS) were used as precursors. Silica SiO2 (Ludox) particles were added to achieve a barrier properties of coating, while Ce(NO3)3·6H2O was added in order to obtain an active corrosion protection. Optimization of sol synthesis was based on the results of ATR-FTIR spectroscopy and UV–vis–NIR spectroscopy. Opening of epoxy rings and completion of hydrolysis and the condensation reactions during the synthesis process were confirmed. Coatings were characterized through thickness, water contact angle, roughness, adhesion, electrochemical properties (potentiodynamic and electrochemical impedance spectroscopy) and the response to prolonged immersion time in 0.1?M NaCl. The high degree of cross-linking of Si–O–Si network structure and high density was achieved during the synthesis of the sol. Moreover, the results showed that the curing process and the incorporation of cerium nitrate into the hybrid sol–gel coating affected to the corrosion properties of the coating. The observed enhancement in corrosion protection properties is attributed to the combination of the barrier properties of the silica matrix with the active protection of the cerium nitrate.  相似文献   

18.
Measuring humidity in dynamic situation needs very high sensitive and fast response sensors. For this purpose, a new high sensitive humidity sensor based on ZnO/ITO (ZITO) composite nanostructure were designed on alumina substrate by sol–gel technique. Step by step monitoring of fabricated substrate after annealing at 400?°C was performed using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and UV–Vis techniques. An oscilloscope and digital ohmmeter were applied to determine time-varying voltage and resistance signal of the fabricated sensors, respectively, while exposed to various humidity level. Sensitivity, response, recovery time, deposited layers thicknesses, composition ratio of ZnO:ITO and annealing temperature parameters were considered to achieve optimum conditions. The optimum conditions for maximum sensitivity were obtained as 1:1(ITO:ZnO) ratio, 400?°C annealing temperature, and three times layer by layer coating. Fabricated sensor has excellent response and recovery time (1.0 and 9?s) and long life time at room temperature (25?±?1?°C) for monitoring human breath and dynamic situation.  相似文献   

19.
The mesoporous silica samples with different concentrations of phosphonic acid groups on the surface were obtained by direct template synthesis. The block-copolymer Pluronic P123 was used as a template, and sodium meta-silicate with diethylphosphatoethyltriethoxysilane as precursors. According to the SAXS diffractograms, mesoporous silica samples have a p6mm hexagonal symmetry. In addition, we used sol–gel method to synthesize xerogel with the same groups for comparison. All samples possess high values of specific surface area 615–730?m2/g and sorption pore volume. FTIR and potentiometric titration methods were used to investigate the surface layer of these samples. Sorption properties of the samples with phosphonic acid groups were studied in respect to a row of metal cations, among which we focused on lead(II), cadmium(II), and dysprosium(III) cations.  相似文献   

20.
The effects of selected process conditions for the sol-gel encapsulation of laccase enzymatic extract, obtained from Coriolus hirsutus, were investigated. Screening trials were carried out to identify the parameters having the most pertinent effects on the encapsulation efficiency (EE) and the residual laccase activity. These parameters included water/silane molar ratio (r), HCl content and protein loading, for the pre-gel silica sol as well as the required time for gel drying and for aging, for the sol-gel process. The experimental findings indicated that a sol-gel drying time of over 6?h resulted in a complete loss of laccase catalytic activity, while an increase in the gel aging time led to an enhancement of the residual enzyme activity. Except for r, the investigated parameters demonstrated no significant effect on the EE of the sol-gel encapsulated enzymatic extract. Overall, the encapsulation of laccase extract in the sol-gel matrix resulted in an enhancement of its catalytic activity, where its highest residual activity (349%) was obtained with an r-value of 4, an HCl content of 4?µmol and a protein loading of 1?mg/mL, using 6 and 24?h of drying and aging times, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号