首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the fabrication and nanofiltration properties of a sol–gel derived microporous zirconia membrane. Effects of synthesis parameters, including hydrolysis time, hydrolysis temperature, hydrolysis ratio and chelating agent dopant, on the state and size of polymeric zirconia sol, were investigated. Highly reproducible and stable zirconia sol after refluxing at 40 °C for 180 min, with an average particle size of approximately 8.6 nm, was synthesized with a recipe of [Zirconium n-propoxide]: [Diethanolamine]: [1-propanol]: [H2O] being 1: 2.2: 28.7: 9.4 (in molar ratio). The sol was subsequently used for the fabrication of microporous ZrO2 membranes onto alumina supported mesoporous γ-Al2O3 layers. ZrO2 membranes with molecular weight cut-off (MWCO) of 354, 1,195, corresponding to the pore size of 0.94 and 1.75 nm, were successfully fabricated. Ionic retention properties of such ZrO2 membranes with respect to electrolyte solutions, like MgCl2, CaCl2, NaCl and Na2SO4, were also determined. Effects of parameters such as concentration of salt solutions and trans-membrane pressure on retention rates of microporous ZrO2 membranes were studied in detail. Results showed that zirconium n-propoxide derived microporous ZrO2 membranes exhibited comparatively high retention rates towards divalent ions like Mg2+ and Ca2+, while much lower retention rates were observed for mono-valent ion (Na+) in the present study, which are the characteristics of nanofiltration membranes.  相似文献   

2.
Journal of Sol-Gel Science and Technology - This study reports the development of a functional adsorbent synthesized by the molecular imprinting method in a sol–gel matrix. The adsorption...  相似文献   

3.
The sol–gel derived chemically combined organic–inorganic nanocomposites were synthesized from poly(etheramide) and tetraethoxysilane. Reaction of a mixture of 4-aminophenyl ether and 1,3-phenyldiamine with terephthaloyl chloride (TPC) in dimethylacetamide (DMAc) produced the amide chains. These chains were modified with carbonyl chloride end groups using a slight excess of diacid chloride and were then reacted with aminophenyl trimethoxysilane (APTMOS), where the amine group reacted with carbonyl chloride end groups. Hydrolysis/condensation of tetraethoxysilane (TEOS) and alkoxy groups present in APTMOS developed bonding between the polyamide chains and inorganic silica network generated in situ. By changing the relative proportions of the polymer solution and the amount of TEOS, the composition of hybrid films was varied. Thin hybrid films with various concentrations of silica network obtained after evaporation of the solvent were subjected to mechanical, dynamic mechanical thermal and morphological measurements. The results indicate a gradual increase in the modulus (3.84 GPa) and tensile strength (121 MPa) up to 15-wt.% silica relative to the pure polyamide. The elongation at break point and toughness gradually decrease with addition of silica content. These hybrids were found to be thermally stable up to a temperature of 500 °C. The weight retained above 800 °C was roughly proportional to amount of silica in the matrix. The glass transition temperature and the storage moduli increased with increasing silica concentration. The maximum increase in the T g value (358 °C) was observed with 15-wt.% silica. Scanning electron micrographs indicated the uniform distribution of silica in the composites with an average particle size ranging from 9 to 47 nm.  相似文献   

4.
5.
A facile approach, based on polyelectrolyte-mediated electrostatic adsorption of a water-soluble titanium complex on colloidal templates and hydrothermal treatment, is presented for the formation of hollow titania (TiO2) and strontium titanate (SrTiO3) spheres. Monodispersed silica gel particles were prepared by the sol?Cgel method and adopted as core templates. Deposition of a water-soluble titanium complex, titanium (IV) bis(ammoniumlactato)dihydroxide (TALH), on the silica gel particles was carried out via the layer-by-layer assembly technique. Hollow spheres were successfully formed from the core?Cshell particles. The silica gel particles used as core templates dissolved during hydrothermal treatment because of the particles?? undeveloped siloxane network. In addition, the hydrothermal treatment induced crystallization of the hollow shells. Therefore, the hydrothermal treatment played two roles; removal of the silica templates and crystallization of the hollow shells. When deionized water was used, hollow TiO2 spheres were obtained. Hollow SrTiO3 spheres could also be formed when an aqueous solution of Sr(OH)2 was used. The approach presented here could be exploited as a novel and sustainable approach for the fabrication of a range of different inorganic hollow spheres.  相似文献   

6.
Hybrid polymer solutions suitable for UV-nanoimprint were synthesized by combination of an alkoxysilane binder mixture with silica nanoparticles. Hydrolysis and condensation reactions were monitored by NMR and viscosity measurements. Thereby long-term stable systems were produced as a prerequisite for industrial application. Dip-coating of glass substrates and subsequent UV-curing yielded thin films. Their thermal densification and microstructural evolution resulted in pure glassy porous coatings, which were in detail characterized by N2-sorption measurements and ellipsometric porosimetry. Results emphasize the importance of the binder-particle interaction within these materials that are destined for the fabrication of microstructured surfaces by cost efficient and industrially feasible UV-based soft lithography. Structured glassy layers with high inorganic content show thermal stability up to >500 °C and have a high structure accuracy >85 %.  相似文献   

7.
8.
Non hydrolytic sol–gel method was employed to synthesize pure anatase TiO2 nanocrystals using tetra isopropyl orthotitanate and poly vinylpyrrolidone as precursors. The structural analyses of the prepared samples were carried out using Fourier transform infrared spectroscopy (FT-IR), thermo gravimetric and differential thermal analysis (TG–DTA), X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The capping of PVP around TiO2 nanoparticles was confirmed by FT-IR spectroscopy, the interaction being via bridging oxygens of the carbonyl (C=O) and the nanoparticle surface. The XRD, Raman and TEM results indicate that the prepared samples had a pure anatase nano-TiO2 structure. The particle size analysed by TEM ranged between 7 and 12 nm. The size of the nanocrystals evaluated from the XRD spectra and TEM micrograph is well in agreement. The spacing for the crystal planes was also determined using the ImageJ program applied to the TEM micrographs.  相似文献   

9.
Electrospun ultrafine silica fibers were calcined at 150–800 °C. The relation of calcination temperature to the ability to form biomimetic apatite in a simulated body fluid solution (SBF) was evaluated. The largest apatite particles, formed on non-calcined fibers after 1 week of soaking in SBF, were 10 μm in diameter, had a narrow size distribution (coefficient of variation 9%), and were similar to pearls on string. The particles size decreased with increasing calcination temperature below 250 °C and the particles formed on the fibers calcined at 250 °C were 4.5 μm in diameter. No particles were found on those calcined above 500 °C. By using a concentrated SBF at 1.5-times higher ionic concentrations than SBF, the size of apatite microparticles increased about 50%. The fibrous substrate covered with apatite particles was effective for osteoblastic differentiation of pre-osteoblastic cells.  相似文献   

10.
A variety of Ag nanoparticles/oxide mesoporous films with templated silica, titania, and zirconia was synthesized by sol–gel method at glass, aluminum, and silicon substrates using metal alkoxides (tetraethoxysilane, titanium tetraisopropoxide, and zirconium tetrapropoxide) and AgNO3 as precursors of oxide films and Ag nanoparticles, respectively, and Pluronic P123 as a template agent. Oxide films alone and Ag/oxide composites were characterized using hexane adsorption, X-ray diffraction (XRD), Raman and ultraviolet (UV)/vis spectroscopies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. The distribution of Ag nanoparticles within the films, their sizes, intensity, and position of surface plasmon resonance (SPR) absorbance band at λ = 400 nm, as well as the textural and structural characteristics of whole films depend on treatment temperature, types of substrates and oxide matrices, oxide crystallization, and Ag content. Ag nanoparticles form preferably on the outer surface of the films under lower sintering temperatures if the amount of loaded silver is low. Oxide crystallization (e.g., TiO2) promotes silver embedding into the outer film layer. At higher silver content (≥10 at.%) and higher calcination temperature (873 K), silver nanoparticles could be entrapped more uniformly along the film profile because of more intensive evaporation of silver droplets from the outer surface of the films on heating.  相似文献   

11.
A needle trap device (NTD) packed with silica composite of multi-walled carbon nanotubes (MWCNTs) prepared based on sol–gel technique was utilized for sampling and analysis of volatile organohalogen compounds (HVOCs) in air. The performance of the NTD packed with MWCNTs/silica composite as sorbent was examined in a variety of sampling conditions and was compared with NTDs packed with PDMS as well as SPME with Carboxen/PDMS-coated fibers. The limit of detection of NTDs for the GC/MS detection system was 0.01–0.05 ng mL−1 and the limit of quantitation was 0.04–0.18 ng mL−1. The RSD were 1.1–7.8% for intra-NTD comparison intended for repeatability of technique. The NTD-MWCNTs/silica composite showed better analytical performances compared to the NTD-PDMS composite and had the same analytical performances when compared to the SPME-Carboxen/PDMS fibers. The results show that NTD-MWCNTs-GC/MS is a powerful technique for active sampling of occupational/environmental pollutants in air.  相似文献   

12.
Silica packed epoxy networks are prepared in two steps via in situ, solvent free sol–gel processing of tetraethoxysilane in liquid epoxy monomer and curing the mixture with a flexible diamine afterwards. The influence of filler content and processing conditions on the mechanical properties and the fracture behavior is studied by means of the static mechanical analysis and AFM characterization of the pristine and the fractured polymer surfaces, and a mechanism to enhance polymer strength and toughness is proposed. The in–situ evolution and packing of silica nanostructures into epoxy networks influences the overall morphology and performance of polymers under high stress. It is found that smaller silica domains distributed at the molecular level cause efficient crack distribution by absorbing energy and thus improve the strength and toughness of silica packed epoxy polymers.  相似文献   

13.
Journal of Sol-Gel Science and Technology - Superhydrophobic coatings were successfully fabricated on cotton textiles through a simple one-step sol–gel process. A fluorinated copolymer...  相似文献   

14.
Crystalline silica in cristobalite phase was successfully prepared at a relatively low temperature of 800 °C by calcinating polyimide/silica hybrid films under ambient air. X-ray photoelectron spectroscopy measurements show that the product is silica after calcination. It is found that the crystallinity is dependent on the removing rate and the strength of the interaction between polyimide and silica. The presence of polyimide plays an important role in the growth of silica. Calcination to remove polyimide with rapid heating results in lower crystallinity compared with calcination with slow heating. For samples with the same content of silica, the crystallinity changes with the strength of the interaction between polyimide and silica molecules.  相似文献   

15.
Sol–gel processing of ZnO nanocolloids has been revisited to prepare various alkaline metal acetate (MAc: K, Na, Li-acetates) containing ZnO nanopowders. Using differential scanning calorimetry and X-ray diffraction investigations, several new relationships between the morphology and the thermodynamic behavior in the aforementioned particulate ZnO/MAc nanocomposites were noticed: (1) large MAc melting depression shifts ?ΔTm ~ 80 °C due to salt confinement within porous ZnO aggregates, (2) corresponding MAc crystallization and re-crystallization temperature depression shifts, (3) presence of multimodal pore size distributions within nanoaggregates and (4) glass formation at temperatures Tg between ?40 and 130 °C. We also note that the Tg value drops with rising alkaline metal size, increasing water content and decreasing ZnO particle size. In contrast, Tg rises in the case of co-doped Fe–LiAc/ZnO compositions.  相似文献   

16.
Silica supported Nickel Oxide fine particles have been synthesized through sol–gel derived Ni–Al Layered Double Hydroxide (LDH) and coated over honeycomb ceramic pre-forms through dip-coating technique. The powder products of supported materials have low crystallinity, negative zeta potential, exhibit high dispersibility and suitable for further processing by coating techniques. The powder X-ray diffraction (XRD) patterns have shown that there is an increase of basal spacing by 3.02 Å in acetylacetonate intercalated LDH. The particles of <2 μm size increase with the rise of LDH component in the composite. The particles of NiO structure formed on decomposition of composites have crystallite size <20 nm. Due to the interlayer reduction of NiO crystallites, the unsupported LDH on calcination gives Ni0 particles of size around 4.18 nm. The Scanning Electron Microscopy (SEM) patterns of coated supported suspensions over ceramic substrates show formation of thin, crack free coats with uniform distribution of particles.  相似文献   

17.
18.
Zhen-Guo Zhao 《中国化学》1992,10(4):325-330
The adsorption isotherms of phenylalanine from aqueous solution on active carbon andsilica gel at varying pH,and the influence of inorganic salt upon the ad rption have been studied(at 25℃).The adsorption amount of phcnylalanine on the silica gel is very low due to the strong ad-sorption of water by silica gel.The results on the active carbon show:(1)The adsorption is found to bepH-dependent,within pH 4.1—5.1 it increases with pH,within pH 5.1—11.8 it decreases with pH,atpH 5.1 the adsorption reaches its maximum;(2)The phenylalanine is adsorbed mainly in the formof zwitterion;(3)A certain amount of cations and anions of phenylalanine are also adsorbed with vander Waals interaction;(4)After adding NaCl,the adsorption of phenylalanine increases markedly.  相似文献   

19.
45S5 bioglass has been widely studied in the last few decades because of its bioactivity and promising applications in the biomedical field. Boron, even few studied, represents a potential element to improve the properties of the 45S5 bioglass derivatives. The bioglasses are conventionally prepared by heat treatment of oxides and silicon. Here, the sol?gel method is proposed for the preparation of the boron-based 45S5 bioglass (45S5B) and the classical 45S5 bioglass (45S5), using water-soluble salts as raw materials. The bioglasses were characterized by FTIR, XRD, and SEM, indicating the success of the sol?gel method for preparation of the samples. The bioglasses were also tested in vitro for bioactivity in biological conditions and cytotoxicity against eukaryotic cells. The bioactivity of 45S5B was similar to the bioactivity of 45S5 bioglass, indicated by the deposition of hydroxyapatite crystals at the surface of the pristine bioglasses. The results of cytotoxicity tests revealed that the IC50 of 45S5B (IC50?=?7.56?mg?mL?1) was similar to the IC50 of 45S5 (IC50?=?8.15?mg?mL?1), indicating its safety for application in the biomedical field.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号