首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This study was designed to examine the interaction of histamine H2-receptor antagonist drug ranitidine (RTN) with human serum albumin by multi-spectroscopic methods. The experimental results showed the involvement of dynamic quenching mechanism which was further confirmed by lifetime spectral studies. The binding constants (K a) at three temperatures (288, 298, and 308 K) were 2.058 ± 0.020, 4.160 ± 0.010 and 6.801 ± 0.011 × 104 dm3 mol?1, respectively, and the number of binding sites (m) were 1.169, respectively; thermodynamic parameters ΔH 0 (44.152 ± 0.047 kJ mol?1), ΔG 0 (?26.214 ± 0.040 kJ mol?1), and ΔS 0 (236.130 ± 0.025 J K?1 mol?1) were calculated. The distance r between donor and acceptor was obtained (r = 3.40 nm) according to the Förster theory of non-radiative energy transfer. Synchronous fluorescence, CD, AFM and 3D fluorescence spectral results revealed the changes in secondary structure of the protein upon interaction with RTN. A molecular modeling study further confirmed the binding mode obtained by the experimental studies.  相似文献   

2.
Adsorption of the gadolinium from H2O and HCl solutions on the ion-exchange resin C100 is investigated. The experiments were carried out by varying the acidity of the liquid phase, the amount of sorbent, and the temperature. The maximal sorption of the ions Gd3+ is observed from the solution 0–0.2 M HCl under optimal conditions, the sorption reaches more than 99.5%. Sorption of Gd3+ on C100 from H2O solution occurs most intensively during the first 3 min then for 30 min the system smoothly comes to equilibrium. The maximal sorption capacity of the resin C100 amounted to 1.2 ± 0.1 mmol g?1. The thermodynamic parameters of sorption: ΔG = ? 24.20 kJ mol?1, ΔS = ? 90.27 J mol?1 K?1, ?H = ? 50.93 kJ mol?1 were evaluated. It is shown that the sorption of gadolinium on the ion-exchange resin C100 is described by models of kinetically pseudo-first and pseudo-second order. It is established that the Gd3+ sorption on the C100 resin is reversible second order chemical reaction.  相似文献   

3.
The present study was focused on the thermal degradation of Eulaliopsis binata biomass produced on a salt-affected soil without any fertilizer or pesticide applications. The plant biomass was subjected to thermal degradation experiments at three heating rates, 10, 30 and 50 K min?1. The kinetic analyses were performed through isoconversional models of Kissinger–Akahira–Sunose and Flynn–Wall–Ozawa, followed by the calculation of thermodynamic parameters of activation. The high heating value was calculated as 15.10 MJ mol?1. The activation energy values of the grass were shown to be ranging from 118 through 240 kJ mol?1. Energy difference of enthalpies of activation between the reagent and the activated complex was in accordance with activation energies. Pre-exponential factors indicated the reaction to follow first-order kinetics. Gibbs free energy for the grass was measured to be ranging from 171 to 174 kJ mol?1. Our data have shown that E. binata biomass offers remarkable potential as a low-cost biomass for bioenergy.  相似文献   

4.
A comparative electrooxidation of Eg in the alkaline solution was investigated over Pt, Pd and Au nanoparticle-modified carbon-ceramic electrode. The kinetic parameters of Eg oxidation, i.e., Tafel slope and activation energy (E a), were determined on the modified electrodes. The lowest E a value of 8.9 kJ mol?1 was calculated on Pt|CCE. In continuation, the reaction orders with respect to the Eg and NaOH concentrations on Pd|CCE were found to be 0.4–0.2 and 0.6, respectively. An adsorption equilibrium constant (b) of 22.36 M?1 and the adsorption Gibbs energy change (ΔG°) of ?7.7 kJ mol?1 were obtained on Pd|CCE. The chronopotentiometry (CP) and chronoamperometry (CA) results showed that Pd|CCE and then Au|CCE have better performance stability than Pt|CCE for Eg electrooxidation. Additionally, the electrochemical impedance spectroscopy (EIS) suggested faster electron-transfer kinetics on Pt than that on the Pd and Au electrocatalysts.  相似文献   

5.
A new high-nitrogen complex [Cu(Hbta)2]·4H2O (H2bta = N,N-bis-(1(2)H-tetrazol-5-yl) amine) was synthesized and characterized by elemental analysis, single crystal X-ray diffraction and thermogravimetric analyses. X-ray structural analyses revealed that the crystal was monoclinic, space group P2(1)/c with lattice parameters a = 14.695(3) Å, b = 6.975(2) Å, c = 18.807(3) Å, β = 126.603(1)°, Z = 4, D c = 1.888 g cm?3, and F(000) = 892. The complex exhibits a 3D supermolecular structure which is built up from 1D zigzag chains. The enthalpy change of the reaction of formation for the complex was determined by an RD496–III microcalorimeter at 25 °C with the value of ?47.905 ± 0.021 kJ mol?1. In addition, the thermodynamics of the reaction of formation of the complex was investigated and the fundamental parameters k, E, n, \( \Updelta S_{ \ne }^{{{\uptheta}}} \), \( \Updelta H_{ \ne }^{{{\uptheta}}} \), and \( \Updelta G_{ \ne }^{{{\uptheta}}} \) were obtained. The effects of the complex on the thermal decomposition behaviors of the main component of solid propellant (HMX and RDX) indicated that the complex possessed good performance for HMX and RDX.  相似文献   

6.
The thermodynamic activation parameters of hindered rotation of the CF3 group in the 4-nitrophenyltrifluoromethylsulfone radical anion in DMF were determined from the temperature dependence of the EPR line widths and spin density distributions calculated by the U-B3LYP method in the 6-31+G* basis set. In the range 293 > T > 199 K, the activation energy of hindered rotation E F depends on the temperature and changes in the range 9.67 < E F < 18.95 kJ·mol?1; the changes in the activation enthalpy and entropy are 7.23 < ΔH < 17.30 kJ·mol?1 and ?53.45 < ΔS < ?11.37 J·(mol·K)?1, respectively. Based on the suggested method for evaluating the inner product of the g tensor and the tensor of anisotropic hfi with the 14N nucleus for nitrobenzene radical anions in the liquid state we calculated the correlation time and determined the activation energy of rotational diffusion of the 4-nitrophenyltrifluoromethylsulfone radical anion in DMF, E r = 20.175±0.54 kJ·mol?1.  相似文献   

7.
IntroductionZincisanessentialtraceelementtothelife .Manydiseasesarousedfromadeficiencyofzincelementhavere ceivedconsiderableattention .L α Aminoacidsarebasicunitsofproteins .L α Trytophanisoneoftheeightspeciesofaminoacidsindispensableforlife ,whichhastobeab sorbedfromfoodbecauseitcannotbesynthesizedinthehumanbody .InviewofthecomplexesofL α trytophanandessentialelementsasaddictiveswidelyusedinsuchfieldsasfoodstuff,medicineandcosmetic ,1 3theyhaveabroadenprospectforapplications .Briefly ,ab…  相似文献   

8.
Interaction of ammonia with H-MCM-22 zeolite (Si/Al = 24.5) was investigated by temperature-programmed desorption technique in order to obtain information on thermodynamics of the process. Average activation energy for desorption of ammonia from Brønsted acid sites of H-MCM-22 zeolite was estimated from the data obtained under conditions varying in heating rate and also flow rate of carrier gas. It resulted in value of E d = 127 kJ mol?1 for heat rate variation method, whereas flow rate variation led to E d value of 111 kJ mol?1. Obtained E d values are compared with those reported in the literature for other zeolitic materials and discussed in the broader context of zeolite acidity. Comparison of E d values estimated here for H-MCM-22 zeolite with corresponding data for other protonic zeolites shows that H-MCM-22 displays mediocre/lower activation energy for ammonia compared with other high-silica zeolites.  相似文献   

9.
2-Methoxycyclohexanol is synthesized through an alcoholysis reaction of cyclohexene oxide and methanol with Ag2CsPW12O40 as catalyst. The elemental analyzer, FT-IR, GC, and NMR are used to analyze and confirm elements, functional groups, purity, and molecular structure of 2-methoxycyclohexanol. The equation between the specific heat capacity (C p) and the temperature from 280 to 340 K is fitted by the results of differential scanning calorimeter to examine 2-methoxycyclohexanol. Bomb calorimeter is introduced to determine the standard enthalpy change of combustion of 2-methoxycyclohexanol (? 3938.6 ± 2.0 kJ mol?1). The standard enthalpy of formation has been calculated as ? 816.88 ± 2.21 kJ mol?1, based on Hess’s law. These basic thermodynamic parameters are deemed to facilitate the exploitation of new production route of 2-methoxycyclohexanol.  相似文献   

10.
11.
Electrical conductivity measurements were used to study the hydrolysis reaction of dilute aqueous solution of ethyl acetate with the presence β-cyclodextrin (β-CD) within a concentration range between 0.00 and 0.00750 M in basic medium at 25.0?°C. 0.00265 M of β-CD was chosen as typical concentration for studying the same reaction at different temperatures between 21.0 and 35.0?°C. Two different values of activation energy for the hydrolysis reaction of free ethyl acetate and ethyl acetate/β-CD complex were evaluated, and their values are 46.3 and 62.0 kJ mol?1 respectively. The standard Gibbs energy of activation (??Go), standard enthalpy of activation (??Ho), and standard entropy of activation (??So) for the two different cases were evaluated. β-CD plays a notable role in retarding the rate of hydrolysis of ethyl acetate in basic medium.  相似文献   

12.
[Mn(NH3)6](NO3)2 crystallizes in the cubic, fluorite (C1) type crystal lattice structure (Fm \( \overline{3} \) m) with a = 11.0056 Å and Z = 4. Two phase transitions of the first-order type were detected. The first registered on DSC curves as a large anomaly at T C1 h  = 207.8 K and T C1 c  = 207.2 K, and the second registered as a smaller anomaly at T C2 h  = 184.4 K and T C2 c  = 160.8 K (where the upper indexes h and c denote heating and cooling of the sample, respectively). The temperature dependence of the full width at half maximum of the band associated with the δs(HNH)F1u mode suggests that the NH3 ligands in the high temperature and intermediate phase reorientate quickly with correlation times in the order of several picoseconds and with activation energy of 9.9 kJ mol?1. In the phase transition at T C2 c probably only a some of the NH3 ligands stop their reorientation, while the remainders continue to reorientate quickly with activation energy of 7.7 kJ mol?1. Thermal decomposition of the investigated compound starts at 305 K and continues up to 525 K in four main stages (I–IV). In stage I, 2/6 of all NH3 ligands were seceded. Stages II and III are connected with an abruption of the next 2/6 and 1/6 of total NH3, respectively, and [Mn(NH3)](NO3)2 is formed. The last molecule of NH3 per formula unit is freed at stage IV together with the simultaneous thermal decomposition of the resulting Mn(NO3)2 leading to the formation of gaseous products (O2, H2O, N2 and nitrogen oxides) and solid MnO2.  相似文献   

13.
Molecular structure, conformational stability and vibrational wave numbers for the rotational isomers of 2-furoyl chloride and 3-furoyl chloride have been computed using the B3LYP method with the 6-311++G(d,p) basis set. From computations, 2-furoyl chloride was predicated to exist predominantly in cis conformation with cistrans rotational barrier 40.40 kJ·mol?1, and 3-furoyl chloride was predicated to exist predominantly in the trans conformation with cistrans rotational barrier 30.17 kJ·mol?1. The effects of solvents on the conformational stability of all the molecules in nine different solvents (heptane, chloroform, tetrahydrofuran, dichloroethane, acetone, ethanol, methanol, dimethylsulfoxide and water) were investigated. The integral equation formalism of the polarizable continuum model was used for all solution phase computations. The vibrational wave numbers and the corresponding vibrational assignments of the molecules in C1 symmetry were examined and the simulated infrared spectra of the molecules are reported. The geometrical parameters, highest occupied and lowest unoccupied molecular orbitals, Infrared intensities, and molecular electrostatic potentials results are reported.  相似文献   

14.
The heat capacities of 1-butyl-3-methylimidazolium lactate ionic liquids ([C4mim][Lact]) were measured with a highly accurate automatic adiabatic calorimeter over the temperature range from 79 to 406 K. And the experimental values of molar heat capacities were fitted to a polynomial equation using least square method in the appropriate temperature ranges. The standard molar heat capacity was determined to be 1734.46?±?5.12 J K?1 mol?1 at 298.15 K. The molar enthalpy and molar entropy of the transition were determined to be 15.575?±?0.045 and 64.44?±?0.14 J K?1 mol?1. Other thermodynamic properties, such as (HT???H298.15) and (ST???S298.15), were also calculated. Furthermore, when the temperature reaches 241.87 K, the strongest peaks appeared by analysis of the heat capacity curve. This phenomenon could be explained from the interionic interaction, which is the hydrogen bond between the anions and cations.  相似文献   

15.
The nanosized LiNiPO4 was successfully synthesized by a solid-state reaction between the new Ni3(PO4)2·8H2O precursor and Li3PO4 at 700 °C in air atmosphere. The formation of LiNiPO4 was generated via three thermal decomposition steps. The samples were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, atomic absorption/atomic emission spectrophotometers, and thermogravimetric/differential thermal gravimetric/differential thermal analysis techniques. The activation energy (Eα) values of the three steps were calculated by Vyazovkin method and determined to be 90.39?±?5.79, 197.81?±?7.46, and 308.66?±?12.03 kJ mol?1, respectively. The average Eα values from this method are very close to Eα from KAS method. The most probable mechanism functions g(α) of three steps were evaluated by using the masterplots method and found to be the F1/3 (first step), F3/2 (second step), and D4 (final step), respectively. The pre-exponential factors (A) values of three steps were obtained based on the Eα and g(α). The kinetic triplet parameters of the formation of LiNiPO4 from the new precursor are reported in the first time.  相似文献   

16.
Currently, the most examinations and markers are of limited diagnostic and prognostic value in chronic inflammation of the pancreas and its malignant tumorous disease. The purpose of this pilot study was to measure thermal changes of blood plasma by differential scanning calorimetry (DSC) method on patients with chronic pancreatitis, and with operable or inoperable pancreatic adenocarcinoma. The study involved chronic pancreatitis patients (n = 5), in whom had to perform surgery due to any complications. In malignant pancreatic cancer group, according to resectability of the tumors, patients were divided into operable (curative R0 resection, n = 11) and inoperable (palliative double bypass, n = 5) subgroups. Peripheral blood samples were collected from the patients preoperatively and from healthy controls (n = 5). Denaturation of plasma components was detected in Setaram Micro DSC-II calorimeter. DSC results showed decrease of T m1 (48.8 °C) and T m2 (61.8 °C) and increase of T m3 (68 °C) in chronic pancreatitis group compared to healthy controls (56.2, 63.1 and 68 °C). Similar tendencies were in patients with operable (48.2, 61.5, 67.6 °C) and inoperable (48.1, 62.4, 69 °C) pancreas adenocarcinoma. Calorimetric enthalpy mildly decreased in each group except for operable group (1.3 J g?1 ?H) compared to controls (1.2 J g?1 ?H). This research confirmed that DSC parameters of blood plasma on patients with chronic pancreatitis and pancreatic adenocarcinoma are clearly distinct from thermodynamical data of healthy controls. After better validation of calorimetric data, it can be a noninvasive tool for diagnostic and monitoring of pancreatic diseases.  相似文献   

17.
Computational methods were used to calculate the crystal lattice energy reflecting global interactions, predominantly long-range electrostatic interactions between ions, as well as the energy of selected specific local C–H···O, C–H···π and π···π interactions found in synthesized 7-(diethylamino)-2-(2-oxo-2H-chromen-3-yl)chromenium perchlorate, the structure of which was determined by X-ray crystallography. Local interactions occurring between specific sites of molecules, amounting to a few tens of kJ mol?1, most likely account for the mutual arrangement of molecular ions, whereas global ones, exceeding half-a-thousand kJ mol?1, are responsible for the thermodynamic stability of the compound investigated in the crystalline solid phase, whose potential applications are briefly outlined.  相似文献   

18.
From three cell-associated β-xylosidases produced by Aureobasidium pullulans CBS 135684, the principal enzyme was enriched to apparent homogeneity and found to be active at high temperatures (60–70 °C) over a pH range of 5–9 with a specific activity of 163.3 units (U) mg?1. The enzyme was thermostable, retaining over 80% of its initial activity after a 12-h incubation at 60 °C, with half-lives of 38, 22, and 10 h at 60, 65, and 70 °C, respectively. Moreover, it was tolerant to xylose inhibition with a K i value of 18 mM. The K m and V max values against p-nitrophenyl-β-d-xylopyranoside were 5.57 ± 0.27 mM and 137.0 ± 4.8 μmol min?1 mg?1 protein, respectively. When combining this β-xylosidase with xylanase from the same A. pullulans strain, the rate of black liquor xylan hydrolysis was significantly improved by up to 1.6-fold. The maximum xylose yield (0.812 ± 0.015 g g?1 dry weight) was obtained from a reaction mixture containing 10% (w/v) black liquor xylan, 6 U g?1 β-xylosidase and 16 U g?1 xylanase after incubation for 4 h at 70 °C and pH 6.0.  相似文献   

19.
In this study, a series of binary mixtures of N-butyl stearate (nBS) and methyl palmitate (MP) were used to produce a novel composite phase change material (CPCM) for potential application in the eastern China, and their thermal properties were investigated by differential scanning calorimetry (DSC). The results of DSC indicated that the mixture consisting of 10 mass% nBS and 90 mass% MP is optimum as the CPCM in terms of the phase change temperature ranges (T f = 19.74–5.59 °C; T m = 18.34–33.80 °C) and latent heats (ΔH f = 176.8 J g?1; ΔH m = 189.3 J g?1). On the other hand, the thermal reliability and chemical stability of the CPCM after 120, 180, 240, 300, 360 and 500 accelerated thermal cycling tests were studied by DSC and fourier transform infrared (FTIR) analysis. The results demonstrated that the CPCM had good thermal reliability and chemical stability.  相似文献   

20.
Dimethylgold(III) complexes with 8-hydroxyquinoline Me2Au(Ox) (I) and 8-mercaptoquinoline Me2Au(Tox) (II) were synthesized and studied. Complex II obtained for the first time was identified from the elemental analysis, IR, 1H NMR, and mass spectrometry data. The thermal properties of complexes I, II in condensed state were investigated by thermography. The temperature dependences of the saturated vapor pressure over crystals were measured by the Knudsen effusion method with mass spectrometric recording of the gas phase composition and the thermodynamic characteristics of the sublimation process were determined: for I, log P[Torr] = (14.6 ± 0.3) ? (6.34 ± 0.10) × 103/(T, K), Δ H subl o = 121.2 ± 1.9 kJ?1, Δ S subl o = 224.1 ± 4.6 J mol?1 K?1 (the temperature interval under study 80–115°C); for II, log P [Torr] = (13.3 ± 0.2) ? (6.30 ± 0.09) × 103/(T, K), Δ H subl o = 120.5 ± 1.7 kJmol?1, ΔS subl o = 199.3 ± 3.0 J mol?1 K?1 (86–145°C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号