首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BaTiO3 (BTO) and BaTi1?xMnxO3 (x?=?0.25, 0.50, 0.75?mol%) ceramic materials have been prepared by the sol–gel combustion method. X-ray diffraction (XRD) has been carried out to characterize the phase purity and crystal structure of the prepared compounds, and all XRD patterns suggest tetragonal structure with the phase group of P4mm. The variation in the estimated lattice parameters confirms the incorporation of Mn atoms at Ti site of BTO. Raman spectroscopy studies under various temperatures suggest a phase transition from tetragonal to cubic phase at ~433?K, identified by a distinct Raman mode at 308?cm?1. As Raman modes are getting softened by Mn doping, phase transition temperature of the Mn-doped compounds is significantly decreased from 473?K (x?=?0%) to 433?K (x?=?0.75%). Dielectric properties such as permittivity and dielectric loss as the function of frequency under various temperatures have two distinct dielectric anomalies (i) at 393?K associated to tetragonal to cubic phase transition and (ii) at 550?K due to oxygen vacancy defect in the samples. Observation of weak ferromagnetism at 2, 300, and 400?K in the M (H) and ZFC-FC curve, suppose its origin due to an intriguing exchange interaction between Mn and oxygen vacancies.  相似文献   

2.
Prospective cathode materials Mg2-xMn x SiO4 (0.0?≤?x?≤?0.4) for magnesium-ion secondary battery were synthesized using sol gel method. Crystalline structure, morphology, particle size, electrical and electrochemical properties of the samples were investigated. X-ray diffraction patterns of the materials exhibited no extra peak for x?≤?0.6 indicated that Mg2-xMn x SiO4 materials were successfully synthesized. Mn doping in magnesium site did not affect the formation of single phase, and this probably due to the low concentration of Mn to induces structural changes. Mn doping contributed to the enhancement of the electrochemical performance of Mg2SiO4. For this work, Mg1.4Mn0.6SiO4 which possesses the largest unit cell volume, smallest charge transfer resistance, and highest conductivity value showed the most promising electrochemical performance compared to the other samples. These results indicated the suitability of the Mg2-xMn x SiO4 to be exploiting further for potential applications as solid electrolytes in electrochemical devices and strengthen the fact that doping could be an effective way to enhanched the structural, electrical and electrochemical performance of materials.  相似文献   

3.
The presented study deals with relation between chemical composition of precursor sols and surface free energy of inorganic-organic films. Inorganic-organic films were prepared from precursor sols in “tetraethoxysilane (TEOS) - triethoxy(octyl)silane (OTES) - distilled water - nitric acid - isopropyl alcohol” system. The fifteen sols were prepared, where the ratio of K?=?x(OTES)/(x(TEOS)?+?x(OTES)) varied from 0 to 0.5 and ratio of R?=?x(H2O)/(x(TEOS)?+?x(OTES)) varied from 2 to 6. The relationship between chemical composition and surface free energy of inorganic-organic films was quantified by model selection approach. Model, which describes the studied relationship in the best way, was selected on the basis of Akaike information criterion. Based on the analysis of selected (the best describing) model, it was found out that the surface free energy as well as its dispersion and polar component are dependent only on K ratio in observed range of K and R values. Form the physico-chemical aspect, the observed dependences of surface free energy, its dispersive and polar component on chemical composition of precursor sols are explained by the influence of octyl groups on the sequences of hydrolysis and condensation reactions leading to formation of particles in precursor sol. In addition, the arrangement of octyl groups is used for explanation of particles arrangement on film surface.  相似文献   

4.
The aim of this work was an investigation of structural and electrical properties of ZnO/Zn2-xFexTiO4 (x?=?0.7, 1, 1.4) powders. The compounds obtained by sol-gel method are characterized by several techniques: X-ray diffraction (XRD), N2 adsorption–desorption isotherms, scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), electrical and dielectrical measurements. The XRD, SEM and XPS analysis confirmed the formation of ZnFeTiO4 inverse spinel structure. The electrical and dielectrical properties of ZnO/Zn2-xFexTiO4 (x?=?0.7, 1, 1.4) were measured by impedance spectroscopy, revealing a decrease in the electrical conductivity and the dielectric constant with Fe content.  相似文献   

5.
BaM hexaferrites substituted with both Ca2+ and Mg2+ ions, namely, Ba1-2×CaxMgxFe12O19 (0.0?≤?x?≤?0.1), synthesized during a sol–gel auto-combustion route. The hexaferrite phase and morphology of all samples were investigated using X-ray powder diffraction, a field emission scanning electron microscope, a high-resolution transmission microscope, and Fourier transform infrared spectroscopy. In addition, an M-type hexagonal structure was confirmed using XRD for all samples. FE-SEM and TEM revealed the shape of the hexagonal plate. Measurements of the magnetization versus the field M(H) of Ba1-2×CaxMgxFe12O19 (0.0?≤?x?≤?0.1) nanohexaferrites were conducted at 300 and 10?K. A hard-ferrimagnetic behavior at both 300 and 10?K was noted for the different products produced. The squareness ratio indicates the uniaxial anisotropy for various products. The deduced values of saturation magnetization (Ms) in all substituted samples are higher than in the pristine sample (x?=?0). The Ba0.96Ca0.02Mg0.02Fe12O19 nanosized hexaferrite showed the highest values of Ms, remanence Mr, magneton number (nB), and magnetocrystalline anisotropy constant (Keff). In contrast, the values of the coercive field (Hc) and intrinsic coercivity (Hci) diminish with the increase in the amount of the substituted Ca and Mg elements.  相似文献   

6.
A robust synthesis approach to Ni2+-substituted Mg0.25-xNi x Cu0.25Zn0.5Fe2O4 (0?≤?x?≤?0.25?mol.) ferrimagnetic oxides using citrate assisted sol–gel process is reported. The route utilizes simple metal nitrate precursors in aqueous solution, thus eliminating the need for organometallic precursors. Citric acid acts as a fuel for the combustion reaction and forms stable complexes with metal ions preventing the precipitation of hydroxilated compounds to yield the composite ferrite structure by auto-combustion process. The XRD signatures, especially (3 1 1) plane, confirmed the formation of spinel structure. The linear growth of lattice constant from 8.385 to 8.409?Å was observed by Ni2+ substitution from 0 to 0.25. The dense microstructure is observed with the average grain size of 0.42–2.18?µm. The transport properties revealed the semiconducting behavior of as-prepared ferrite material, with an increase in the DC-electrical resistivity by the incorporation of nickel. The magnetic properties viz. initial permeability (µi) and magnetic moment (nB) are explained, based on the deviation in saturation magnetization (Ms), anisotropy constant (K1), density values, and exchange interactions. Furthermore, the effect of adding Ni2+ on the Curie temperature, frequency-dependent dielectric properties of the ferrite material are also discussed.  相似文献   

7.
Barium zirconium titanate (Ba(Zr x Ti1?x)O3, BZT) super smooth thin films are synthesized through modified sol-gel dip coating route on fluorine-doped tin oxide substrates with a suitably low calcination temperature. The Fourier tranformed infrared spectroscopy proves that impurities and starting materials are completely removed in the calcination process. Crystallographic phases of the samples are identified by the X-ray diffractometry and confirms that all samples are crystallized into a single perovskite phase. Introducing zirconium into the structure causes a reduction in dielectric constant of barium titanate. The optical properties of the films are also investigated. The results indicate that all samples are highly transparent and zirconium reduces the absorption coefficient. Moreover, the band gap energy of barium titanate increases when doped with zirconium and the highest band gap energy of about 3.71?eV along with the lowest dielectric constant of 850 at frequency of 100?kHz are obtained in 15 at.% zirconium-doped sample.  相似文献   

8.
In this study, the effective TiO2/Ag composite antibacterial aerogel powder is prepared by facile sol–gel method and ethanol supercritical technology. The surface morphology, structural properties, and chemical components are monitored by scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and energy disperse?spectroscopy (EDS). Meanwhile, absorbance spectra and specific surface area of TiO2/Ag composite aerogel are characterized by UV-Vis spectra and Brunauer–Emmett–Teller. The TiO2/Ag composite aerogel with Ti/Ag molar ratios of 10:1, 30:1, 50:1 are measured for its antibacterial property by using Escherichia coliform (E.coli) and Staphylococcus aureus (S. aureus). The results show that the size of TiO2 and Ag nanoparticles are 40?nm and 25?nm, respectively. Simultaneously, the obtained composite aerogel with a porous structure possessed a surface area of 148?m2/g, an average pore size 11.5?nm, and a pore volume 0.39?cm3/g. With the increase of Ag content, the antibacterial properties of composite aerogel are greatly improved compared with pure TiO2 aerogel. When Ag/Ti molar ratios was 1:10, the highest antibacterial rate can up to 99%, and the inhibition bands of E. coli and S. aureus are 23?mm and 19?mm, respectively.
Schematic representation of growth mechanism of TiO2/Ag composite aerogel (a) and antibacterial performance test (b, c)
  相似文献   

9.
Mixed metal oxides of tin with strontium (xSnO2.SrO) in different molar ratio {where x?=?1 (1), 2 (2), 4(3); SnO2 doped with Sr+2(4), SnO2 doped with Sr+2 and co-doped with F?(5)} have been prepared by sol–gel technology in basic medium using SnCl2.2H2O as precursor in isopropanol as solvent. Structural analysis by XRD patterns have shown formation of particles at nanoscale and phase separation of SnO2 in tetragonal rutile framework in these mixed metal oxides. This fact was further supported by TEM. SEM images of all these samples have shown formation of various geometrical patterns ranging from spherical particles to nanorods. In the IR spectra of all these oxides, Sr–O absorption bands were present only in sample (1). UV–Vis spectroscopy has shown reduction in optical band gap in mixed metal oxides and the lowest value of band gap was observed for sample (3). Photoluminescence spectra of all these derivatives are found to be almost similar again indicated retention of tetragonal rutile SnO2 framework. IV curves of all these oxides are non-linear and lowest resistance was observed for sample (3). This fact was further supported by impedance measurements.  相似文献   

10.
The effect of Nb as a support modifier on the NiMo6/Al2O3–Nb2O5(x) (x?=?0, 1, 4, and 8?wt% Nb) catalysts was studied. The supports were prepared by one-pot coprecipitation from soluble precursors. The XRF analysis of the catalysts showed that the contents of Mo and Ni increased slightly with the presence of Nb. Micropore area and pore volume augmented importantly with Nb content, resulting in pore diameters between 5.3 and 9.3?nm. XPS analysis showed that the presence of Nb decreases the active metal–support interaction, improving the Mo and Ni sulfidation degree. The Raman spectra of sulfided catalysts suggested an increase in the number of layers of MoS2 in the presence of Nb. Generally, the thiophene HDS activity at normal pressure of sulfided NiMo6/Al2O3–Nb2O5(8) was greater than that of the sulfided catalysts with x?=?0, 1, and 4?wt% Nb, which can be attributed to the Nb promotion that would have an effect on the type of active site (Brønsted or Lewis acidic sites), since the number of sites by CO chemisorption for sulfided NiMo6/Al2O3–Nb2O5(x) did not show correlation with the catalytic activity. The high-pressure HDS activity of dibenzothiophene was also greater in the presence of Nb, and the hydrogenation route was preferred for the Nb-promoted solid, while the unpromoted one showed a larger yield of direct desulfurization products.  相似文献   

11.
Multiferroic materials based on lead-free ferroelectric materials have potential applications in the fabrication of next-generation devices. Herein, the sol–gel method is used to synthesize pristine and Cr-doped Bi0.5K0.5TiO3 nanocrystals. Density functional theory simulation is performed to elucidate the mechanism underlying the observed electronic and magnetic properties of the nanocrystals. In materials doped with 9?mol% Cr, the substitution of Cr in the Ti site decreases the optical band gap from 3.09?eV to 2.26?eV and induces ferromagnetism at room temperature. The saturation magnetization of the materials is approximately 0.18?μB/Cr at 5?K and can be attributed to the interplay of the unpaired electron counts of Cr3+ ions in the crystal field mechanism and Jahn–Teller effect. Pristine Bi0.5K0.5TiO3 samples exhibit weak ferromagnetism at room temperature, given the existence of the mixed valence states of Ti4+ and Ti3+ and the formation of O or Ti vacancies during sample growth. The present study provides deep insight into the induction of magnetism in ferroelectric materials doped with transition metals. Such materials have potential spintronic applications.  相似文献   

12.
Flower-like ceria (CeO2) architectures consisting of well aligned nanosheets were first synthesized by a glycol solvothermal method. The size of CeO2 architectures is about 5?μm in width and 10?μm in length, with the nanosheets thickness below 100?nm. Subsequently, the adsorbed Ag ions on the surface of CeO2 were in situ reduced to form Ag nanoparticles (NPs), leading to the fabrication of Ag/CeO2 hybrid architectures (HAs). The formed Ag NPs with sizes of 20–40?nm were uniformly loaded on the surface of the CeO2 sheets. The antibacterial properties of Ag/CeO2 HAs against Gram-negative E. coli and Gram-positive S. aureus were evaluated by minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and a filter paper inhibition zone method. The results demonstrated that Ag/CeO2 HAs displayed excellent antibacterial activity toward S. aureus and E. coli, which were attributed to the synergistic antibacterial effect between Ag NPs and CeO2 in HAs. Here, CeO2 nanoflowers as a new substrate could restrict Ag NPs aggregations and improve their antibacterial activities. Therefore, the resulted Ag/CeO2 HAs would be considered as a promising antibacterial agent.  相似文献   

13.
Light-activated antimicrobial coatings were obtained by the covalently immobilizing photo-sensitizers in a hybrid organic/inorganic matrix. These coatings were deposited via sol-gel chemistry using epoxy and methyl functional silanes. The light-activated chromophores used in this study were Methylene Blue, Toluidine Blue O, and Rose Bengal. The immobilized photo-sensitizers did not leach from the coatings. The mechanically durable hybrid coatings comprising 2.5% by weight of Rose Bengal had a good adhesion to the glass surface. These coatings were tested for the photo-deactivation of Escherichia coli and Staphylococcus aureus using illumination by a commercial fluorescent lamp. Log reduction of E. coli and S. aureus were >4 when illuminated by the fluorescent lamp in 1 and 3?h, respectively. Due to its high mechanical durability and chemical resistance, such light-activated hybrid coatings are promising candidates for indoor applications in healthcare facilities.  相似文献   

14.
Bone infections in human beings are an essentially destructive problem with crucial clinical and economic effects; thus, incorporation of antibiotics such as amoxicillin (AMX) into the scaffold was developed as an effective treatment for bone infections. In this respect, we develop new nanostructured bredigite (Bre; Ca7MgSi4O16)–amoxicillin (AMX; α-amino-hydroxybenzyl-penicillin) scaffolds containing different concentrations of amoxicillin (0, 3, 5, and 10%) by using space holder method to assure bactericidal properties. The result depicted that the Bre–AMX scaffolds possess porosity of 80–82% with high compressive strength of 1.2–1.4?MPa and controlled antibiotic release for prevention of infection. Bre–(3–10%)AMX scaffolds were able to destroy Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria, as well as effectively inhibit the growth of bacterial cells; in addition, the antibacterial activity of the AMX-loaded scaffolds augmented with the increase of the AMX concentration. Sustained drug release was detected from Bre–AMX scaffolds accompanied by initial burst release of 20% for 8?h, followed by a sustained release, which is favorable for bone infection treatment. These new Bre–(3–5%)AMX scaffolds possess excellent mechanical properties and antibacterial activity with no cytotoxicity suggested as an appropriate alternative for bone infection treatment.  相似文献   

15.
Bismuth ferrite (BiFeO3) nanopowder have been successfully synthesized for the first time via a microwave-assisted sol-gel combustion method by using citric acid as fuel. The resulting nanopowder was characterized using FT-IR, TG-DTA, XRD, EDX, VSM, SEM, and UV-Vis DRS. A ferromagnetic hysteresis loop with a saturation magnetization (MS) of 0.66?emu?g?1 has been observed at room temperature in the sample. The optical properties of the nanosized BiFeO3 showed its small band gap (=2.08?eV) indicates a possibility of utilizing much visible light for photocatalysis.  相似文献   

16.
The effects of selected process conditions for the sol-gel encapsulation of laccase enzymatic extract, obtained from Coriolus hirsutus, were investigated. Screening trials were carried out to identify the parameters having the most pertinent effects on the encapsulation efficiency (EE) and the residual laccase activity. These parameters included water/silane molar ratio (r), HCl content and protein loading, for the pre-gel silica sol as well as the required time for gel drying and for aging, for the sol-gel process. The experimental findings indicated that a sol-gel drying time of over 6?h resulted in a complete loss of laccase catalytic activity, while an increase in the gel aging time led to an enhancement of the residual enzyme activity. Except for r, the investigated parameters demonstrated no significant effect on the EE of the sol-gel encapsulated enzymatic extract. Overall, the encapsulation of laccase extract in the sol-gel matrix resulted in an enhancement of its catalytic activity, where its highest residual activity (349%) was obtained with an r-value of 4, an HCl content of 4?µmol and a protein loading of 1?mg/mL, using 6 and 24?h of drying and aging times, respectively.  相似文献   

17.
Bismuth ferrite (BiFeO3, BFO) as a prototype multiferroic has been extensively studied in past years; however, there are several key issues not to be clearly expressed. Especially, the relationship of structure and physical properties still remains obscure. In this case, the interband electronic structure of BFO was elaborately manipulated by appropriation dopants of Ni and Gd to realize the huge saturated ferroelectric polarization in the polycrystalline films. For instance, a huge saturated polarization PS of 96?μC/cm2 and remnant polarization Pr of 91?μC/cm2 were achieved in Bi0.925Gd0.075Fe0.95Ni0.05O3 film. The results and analysis show that the alteration in the interband electronic structure and the improvement of morphology derived from the ion doping effect indeed play key roles on the improved ferroelectric property of the doped BFO films. The decreased leakage current density and thereby the enhanced ferroelectric polarization in the doped BFO films should be attributed to the decrease in both Fermi level and Urbach energy closely related with the defects, as well as the improved surface uniformity and compactness of the films. Finally, the mechanism and relationship of structure and physical properties in BFO were systemically analyzed and discussed.
The ferroelectric polarization for pure and doped BiFeO3 films
  相似文献   

18.
Trajectory calculations are used to investigate peak shapes and ion transmission with a proposed new method of mass analysis with a quadrupole mass filter. Dipole excitation is applied to either the x or the y electrodes, or both, to create bands of instability within the first stability region. With excitation between the y electrodes (near β y ?=?0), ions are removed from the low mass side of a peak, and with ion excitation in x (near β x ?=?1), ions are removed from the high mass side. The mass resolution can be approximately doubled with comparatively little loss in ion transmission. Ion motion in an ideal quadrupole field and in the field of a quadrupole constructed with round rods has been studied. With an ideal quadrupole field, excitation in y is found to give better peak shape and resolution than excitation in x. With quadrupoles constructed with round rods, excitation in y is found to remove ions from both the low and high mass sides of a peak. The additional higher order multipoles introduced to the quadrupole potential by the use of round rods couple the x motion to the y motion so that exciting the y motion also excites ions in x. Thus, only excitation in y is necessary. Both with an ideal quadrupole field and quadrupoles constructed with round rods, the resolution can be increased ca. ×2 with little loss of transmission.
Graphical Abstract ?
  相似文献   

19.
CaMn7O12 precursor sol was prepared by using Ca(NO3)2·4H2O and Mn(CH3COO)4·4H2O as the raw materials, acetylacetone (AcAcH) as the chelating agent, and methyl alcohol (MeOH) as the solvent. The CaMn7O12 crystalline film was obtained via dip-coating and annealing treatment on the LaAlO3 (001) single-crystal substrate. XRD θ-2θ scan indicated that the as-prepared CaMn7O12 film had strong preferred orientation along the c-axis. In addition, the results of the ω and ? scans demonstrated that the film exhibited outstanding out-of-plane and in-plane texture characteristics. The SEM characterization showed that the CaMn7O12 film was dense and free of cracks. The grain size was uniform with an average size of ~180?nm. Vibrating sample magnetometer (VSM) test results indicated the CaMn7O12 film was antiferromagnetic and had a saturation magnetization of 114.2?emu/cm3 at 50?K.  相似文献   

20.
In this paper, zinc oxide (ZnO) thin film sensor has been fabricated using different sol–gel spin coating route to detect very low concentration (2?ppm) of ethanol vapors at room temperature (RT). The sensor shows appreciable response ~60% for 100?ppm of ethanol (C2H5OH) vapors at RT under humidity level ~55% RH. Various sensing parameters viz. % response, selectivity, stability, response/recovery time, repeatability, and reproducibility have been studied successfully. Structural and morphological properties have been studied via X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD reveals the wurtzite structure of polycrystalline ZnO thin film. AFM, SEM, and TEM results confirm the wavy structure of well-shaped and slackly distributed ZnO nanograins with average particle size in range ~15–25?nm. The analyte sensing properties at room temperature can be ascribed to higher specific surface area due to nanograins formation. The significant effect of operating temperature on sensor’s performance is also analysed in order to obtain the optimum temperature (Topt) of the sensor device. Response reaches to 321.7% for 100?ppm of ethanol vapors at Topt (175?°C). The transformation in the behavior of sensing layer is observed which is described on the basis of experimental studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号