首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feasible direction method of Frank and Wolfe has been claimed to be efficient for solving the stochastic transportation problem. While this is true for very moderate accuracy requirements, substantially more efficient algorithms are otherwise diagonalized Newton and conjugate Frank–Wolfe algorithms, which we describe and evaluate. Like the Frank–Wolfe algorithm, these two algorithms take advantage of the structure of the stochastic transportation problem. We also introduce a Frank–Wolfe type algorithm with multi-dimensional search; this search procedure exploits the Cartesian product structure of the problem. Numerical results for two classic test problem sets are given. The three new methods that are considered are shown to be superior to the Frank–Wolfe method, and also to an earlier suggested heuristic acceleration of the Frank–Wolfe method.  相似文献   

2.
Combining search directions using gradient flows   总被引:2,自引:0,他引:2  
 The efficient combination of directions is a significant problem in line search methods that either use negative curvature, or wish to include additional information such as the gradient or different approximations to the Newton direction. In this paper we describe a new procedure to combine several of these directions within an interior-point primal-dual algorithm. Basically, we combine in an efficient manner a modified Newton direction with the gradient of a merit function and a direction of negative curvature, if it exists. We also show that the procedure is well-defined, and it has reasonable theoretical properties regarding the rate of convergence of the method. We also present numerical results from an implementation of the proposed algorithm on a set of small test problems from the CUTE collection. Received: November 2000 / Accepted: October 2002 Published online: February 14, 2003 Key Words. negative curvature – primal-dual methods – interior-point methods – nonconvex optimization – line searches Mathematics Subject Classification (1991): 49M37, 65K05, 90C30  相似文献   

3.
We study the inverse problem of recovering an interior interface from a boundary measurement in an elliptic boundary value problem arising from a semiconductor transistor model. We set up a nonlinear least-squares formulation for solving the inverse problem, and establish the necessary derivatives with respect to the interface. We then propose both the Gauss–Newton iterative method and the conjugate gradient method for the least-squares problem, and present implementation of these methods using integral equations.  相似文献   

4.
Interior–point algorithms are among the most efficient techniques for solving complementarity problems. In this paper, a procedure for globalizing interior–point algorithms by using the maximum stepsize is introduced. The algorithm combines exact or inexact interior–point and projected–gradient search techniques and employs a line–search procedure for the natural merit function associated with the complementarity problem. For linear problems, the maximum stepsize is shown to be acceptable if the Newton interior–point search direction is employed. Complementarity and optimization problems are discussed, for which the algorithm is able to process by either finding a solution or showing that no solution exists. A modification of the algorithm for dealing with infeasible linear complementarity problems is introduced which, in practice, employs only interior–point search directions. Computational experiments on the solution of complementarity problems and convex programming problems by the new algorithm are included.  相似文献   

5.
The limiting factors of second-order methods for large-scale semidefinite optimization are the storage and factorization of the Newton matrix. For a particular algorithm based on the modified barrier method, we propose to use iterative solvers instead of the routinely used direct factorization techniques. The preconditioned conjugate gradient method proves to be a viable alternative for problems with a large number of variables and modest size of the constrained matrix. We further propose to avoid explicit calculation of the Newton matrix either by an implicit scheme in the matrix–vector product or using a finite-difference formula. This leads to huge savings in memory requirements and, for certain problems, to further speed-up of the algorithm. Dedicated to the memory of Jos Sturm.  相似文献   

6.
We propose a one-step smoothing Newton method for solving the non-linear complementarity problem with P0-function (P0-NCP) based on the smoothing symmetric perturbed Fisher function(for short, denoted as the SSPF-function). The proposed algorithm has to solve only one linear system of equations and performs only one line search per iteration. Without requiring any strict complementarity assumption at the P0-NCP solution, we show that the proposed algorithm converges globally and superlinearly under mild conditions. Furthermore, the algorithm has local quadratic convergence under suitable conditions. The main feature of our global convergence results is that we do not assume a priori the existence of an accumulation point. Compared to the previous literatures, our algorithm has stronger convergence results under weaker conditions.  相似文献   

7.
This paper is devoted to the study of the proximal point algorithm for solving monotone second-order cone complementarity problems. The proximal point algorithm is to generate a sequence by solving subproblems that are regularizations of the original problem. After given an appropriate criterion for approximate solutions of subproblems by adopting a merit function, the proximal point algorithm is verified to have global and superlinear convergence properties. For the purpose of solving the subproblems efficiently, we introduce a generalized Newton method and show that only one Newton step is eventually needed to obtain a desired approximate solution that approximately satisfies the appropriate criterion under mild conditions. Numerical comparisons are also made with the derivative-free descent method used by Pan and Chen (Optimization 59:1173–1197, 2010), which confirm the theoretical results and the effectiveness of the algorithm.  相似文献   

8.
 We consider a quadratic cut method based on analytic centers for two cases of convex quadratic feasibility problems. In the first case, the convex set is defined by a finite yet large number, N, of convex quadratic inequalities. We extend quadratic cut algorithm of Luo and Sun [3] for solving such problems by placing or translating the quadratic cuts directly through the current approximate center. We show that, in terms of total number of addition and translation of cuts, our algorithm has the same polynomial worst case complexity as theirs [3]. However, the total number of steps, where steps consist of (damped) Newton steps, function evaluations and arithmetic operations, required to update from one approximate center to another is , where ε is the radius of the largest ball contained in the feasible set. In the second case, the convex set is defined by an infinite number of certain strongly convex quadratic inequalities. We adapt the same quadratic cut method for the first case to the second one. We show that in this case the quadratic cut algorithm is a fully polynomial approximation scheme. Furthermore, we show that, at each iteration, k, the total number steps (as described above) required to update from one approximate center to another is at most , with ε as defined above. Received: April 2000 / Accepted: June 2002 Published online: September 5, 2002 Key words. convex quadratic feasibility problem – interior-point methods – analytic center – quadratic cuts – potential function  相似文献   

9.
The iterative algorithm for determination of bilateral (alternating) approximations to the eigenvalues of nonlinear spectral problems that uses a bilateral analog of the Newton method and a new efficient numerical procedure for calculation of the Newton correction and its derivative is proposed. Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 51, No. 1, pp. 65–73, January–March, 2008.  相似文献   

10.
An algorithm is developed for minimizing nonsmooth convex functions. This algorithm extends Elzinga–Moore cutting plane algorithm by enforcing the search of the next test point not too far from the previous ones, thus removing compactness assumption. Our method is to Elzinga–Moore’s algorithm what a proximal bundle method is to Kelley’s algorithm. Instead of lower approximations used in proximal bundle methods, the present approach is based on some objects regularizing translated functions of the objective function. We propose some variants and using some academic test problems, we conduct a numerical comparative study with Elzinga–Moore algorithm and two other well-known nonsmooth methods.   相似文献   

11.
 Semismooth Newton methods constitute a major research area for solving mixed complementarity problems (MCPs). Early research on semismooth Newton methods is mainly on infeasible methods. However, some MCPs are not well defined outside the feasible region or the equivalent unconstrained reformulations of other MCPs contain local minimizers outside the feasible region. As both these problems could make the corresponding infeasible methods fail, more recent attention is on feasible methods. In this paper we propose a new feasible semismooth method for MCPs, in which the search direction asymptotically converges to the Newton direction. The new method overcomes the possible non-convergence of the projected semismooth Newton method, which is widely used in various numerical implementations, by minimizing a one-dimensional quadratic convex problem prior to doing (curved) line searches. As with other semismooth Newton methods, the proposed method only solves one linear system of equations at each iteration. The sparsity of the Jacobian of the reformulated system can be exploited, often reducing the size of the system that must be solved. The reason for this is that the projection onto the feasible set increases the likelihood of components of iterates being active. The global and superlinear/quadratic convergence of the proposed method is proved under mild conditions. Numerical results are reported on all problems from the MCPLIB collection [8]. Received: December 1999 / Accepted: March 2002 Published online: September 5, 2002 RID="★" ID="★" This work was supported in part by the Australian Research Council. Key Words. mixed complementarity problems – semismooth equations – projected Newton method – convergence AMS subject classifications. 90C33, 90C30, 65H10  相似文献   

12.
We consider a reaction–diffusion parabolic problem on branched structures. The Hodgkin–Huxley reaction–diffusion equations are formulated on each edge of the graph. The problems are coupled by some conjugation conditions at branch points. It is important to note that two different types of the flux conservation equations are considered. The first one describes a conservation of the axial currents at branch points, and the second equation defines the conservation of the current flowing at the soma in neuron models. We study three different types of finite-difference schemes. The fully implicit scheme is based on the backward Euler algorithm. The stability and convergence of the discrete solution is proved in the maximum norm, and the analysis is done by using the maximum principle method. In order to decouple computations at each edge of the graph, we consider two modified schemes. In the predictor algorithm, the values of the solution at branch points are computed by using an explicit approximation of the conservation equations. The stability analysis is done using the maximum principle method. In the predictor–corrector method, in addition to the previous algorithm, the values of the solution at the branch points are recomputed by an implicit algorithm, when the discrete solution is obtained on each subdomain. The stability of this algorithm is investigated numerically. The results of computational experiments are presented.  相似文献   

13.
We present an algorithm for large-scale unconstrained optimization based onNewton's method. In large-scale optimization, solving the Newton equations at each iteration can be expensive and may not be justified when far from a solution. Instead, an inaccurate solution to the Newton equations is computed using a conjugate gradient method. The resulting algorithm is shown to have strong convergence properties and has the unusual feature that the asymptotic convergence rate is a user specified parameter which can be set to anything between linear and quadratic convergence. Some numerical results on a 916 vriable test problem are given. Finally, we contrast the computational behavior of our algorithm with Newton's method and that of a nonlinear conjugate gradient algorithm. This research was supported in part by DOT Grant CT-06-0011, NSF Grant ENG-78-21615 and grants from the Norwegian Research Council for Sciences and the Humanities and the Norway-American Association. This paper was originally presented at the TIMS-ORSA Joint National Meeting, Washington, DC, May 1980.  相似文献   

14.
An inexact Newton method for nonconvex equality constrained optimization   总被引:1,自引:0,他引:1  
We present a matrix-free line search algorithm for large-scale equality constrained optimization that allows for inexact step computations. For strictly convex problems, the method reduces to the inexact sequential quadratic programming approach proposed by Byrd et al. [SIAM J. Optim. 19(1) 351–369, 2008]. For nonconvex problems, the methodology developed in this paper allows for the presence of negative curvature without requiring information about the inertia of the primal–dual iteration matrix. Negative curvature may arise from second-order information of the problem functions, but in fact exact second derivatives are not required in the approach. The complete algorithm is characterized by its emphasis on sufficient reductions in a model of an exact penalty function. We analyze the global behavior of the algorithm and present numerical results on a collection of test problems.  相似文献   

15.
Recently, Li et al. (Comput. Optim. Appl. 26:131–147, 2004) proposed a regularized Newton method for convex minimization problems. The method retains local quadratic convergence property without requirement of the singularity of the Hessian. In this paper, we develop a truncated regularized Newton method and show its global convergence. We also establish a local quadratic convergence theorem for the truncated method under the same conditions as those in Li et al. (Comput. Optim. Appl. 26:131–147, 2004). At last, we test the proposed method through numerical experiments and compare its performance with the regularized Newton method. The results show that the truncated method outperforms the regularized Newton method. The work was supported by the 973 project granted 2004CB719402 and the NSF project of China granted 10471036.  相似文献   

16.
We present two algorithms to compute m-fold hypergeometric solutions of linear recurrence equations for the classical shift case and for the q-case, respectively. The first is an m-fold generalization and q-generalization of the algorithm by van Hoeij (Appl Algebra Eng Commun Comput 17:83–115, 2005; J. Pure Appl Algebra 139:109–131, 1998) for recurrence equations. The second is a combination of an improved version of the algorithms by Petkovšek (Discrete Math 180:3–22, 1998; J Symb Comput 14(2–3):243–264, 1992) for recurrence and q-recurrence equations and the m-fold algorithm from Petkovšek and Salvy (ISSAC 1993 Proceedings, pp 27–33, 1993) for recurrence equations. We will refer to the classical algorithms as van Hoeij or Petkovšek respectively. To formulate our ideas, we first need to introduce an adapted version of an m-fold Newton polygon and its characteristic polynomials for the classical case and q-case, and to prove the important properties in this case. Using the data from the Newton polygon, we are able to present efficient m-fold versions of the van Hoeij and Petkovšek algorithms for the classical shift case and for the q-case, respectively. Furthermore, we show how one can use the Newton polygon and our characteristic polynomials to conclude for which m ? \mathbbN{m\in \mathbb{N}} there might be an m-fold hypergeometric solution at all. Again by using the information obtained from the Newton polygon, the presentation of the q-Petkovšek algorithm can be simplified and streamlined. Finally, we give timings for the ‘classical’ q-Petkovšek, our q-van Hoeij and our modified q-Petkovšek algorithm on some classes of problems and we present a Maple implementation of the m-fold algorithms for the q-case.  相似文献   

17.
This paper studies a primal–dual interior/exterior-point path-following approach for linear programming that is motivated on using an iterative solver rather than a direct solver for the search direction. We begin with the usual perturbed primal–dual optimality equations. Under nondegeneracy assumptions, this nonlinear system is well-posed, i.e. it has a nonsingular Jacobian at optimality and is not necessarily ill-conditioned as the iterates approach optimality. Assuming that a basis matrix (easily factorizable and well-conditioned) can be found, we apply a simple preprocessing step to eliminate both the primal and dual feasibility equations. This results in a single bilinear equation that maintains the well-posedness property. Sparsity is maintained. We then apply either a direct solution method or an iterative solver (within an inexact Newton framework) to solve this equation. Since the linearization is well posed, we use affine scaling and do not maintain nonnegativity once we are close enough to the optimum, i.e. we apply a change to a pure Newton step technique. In addition, we correctly identify some of the primal and dual variables that converge to 0 and delete them (purify step). We test our method with random nondegenerate problems and problems from the Netlib set, and we compare it with the standard Normal Equations NEQ approach. We use a heuristic to find the basis matrix. We show that our method is efficient for large, well-conditioned problems. It is slower than NEQ on ill-conditioned problems, but it yields higher accuracy solutions.  相似文献   

18.
We derive a numerical scheme to compute invariant manifolds for time-variant discrete dynamical systems, i.e., nonautonomous difference equations. Our universally applicable method is based on a truncated Lyapunov–Perron operator and computes invariant manifolds using a system of nonlinear algebraic equations which can be solved both locally using (nonsmooth) inexact Newton, and globally using continuation algorithms. Compared to other algorithms, our approach is quite flexible, since it captures time-dependent, nonsmooth, noninvertible or implicit equations and enables us to tackle the full hierarchy of strongly stable, stable and center-stable manifolds, as well as their unstable counterparts. Our results are illustrated using a test example and are applied to a population dynamical model and the Hénon map. Finally, we discuss a linearly implicit Euler–Bubnov–Galerkin discretization of a reaction diffusion equation in order to approximate its inertial manifold.  相似文献   

19.
We propose a new truncated Newton method for large scale unconstrained optimization, where a Conjugate Gradient (CG)-based technique is adopted to solve Newton’s equation. In the current iteration, the Krylov method computes a pair of search directions: the first approximates the Newton step of the quadratic convex model, while the second is a suitable negative curvature direction. A test based on the quadratic model of the objective function is used to select the most promising between the two search directions. Both the latter selection rule and the CG stopping criterion for approximately solving Newton’s equation, strongly rely on conjugacy conditions. An appropriate linesearch technique is adopted for each search direction: a nonmonotone stabilization is used with the approximate Newton step, while an Armijo type linesearch is used for the negative curvature direction. The proposed algorithm is both globally and superlinearly convergent to stationary points satisfying second order necessary conditions. We carry out a significant numerical experience in order to test our proposal.  相似文献   

20.
A new algorithm is proposed for computing the intersection of two plane curves given in rational parametric form. It relies on the Ehrlich–Aberth iteration complemented with some computational tools like the properties of Sylvester and Bézout matrices, a stopping criterion based on the concept of pseudo-zero, an inclusion result and the choice of initial approximations based on the Newton polygon. The algorithm is implemented as a Fortran 95 module. From the numerical experiments performed with a wide set of test problems it shows a better robustness and stability with respect to the Manocha–Demmel approach based on eigenvalue computation. In fact, the algorithm provides better approximations in terms of the relative error and performs successfully in many critical cases where the eigenvalue computation fails.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号