首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of diazabutadienes of type R'N=C(R)-C(R)=NR', L (R = H, Me; R' = cycloalkyl, aryl) with Re(V)OCl(3)(AsPh(3))(2) has furnished Re(V)OCl(3)(L), 1, from which Re(III)(OPPh(3))Cl(3)(L), 2, and Re(V)(NAr)Cl(3)(L), 3, have been synthesized. Chemical oxidation of 2(R = H) by aqueous H(2)O(2) and of 3(R = H) by dilute HNO(3) has yielded Re(IV)(OPPh(3))Cl(3)(L'), 5, and Re(VI)(NAr)Cl(3)(L'), 4, respectively, where L' is the monoionized iminoacetamide ligand R'N=C(H)-C(=O)-NR'(-). Finally, the reaction of Re(V)O(OEt)X(2)(PPh(3))(2) with L has furnished bivalent species of type Re(II)X(2)(L)(2), 6(X = Cl, Br). The X-ray structures of 1 (R = Me, R' = Ph), 3 (R = H, R' = Ph, Ar = Ph), and 4 (R = H, R' = cycloheptyl, Ar = C(6)H(4)Cl) are reported revealing meridional geometry for the ReCl(3) fragment and triple bonding in the ReO (in 1) and ReNAr (in 3 and 4 ) fragments. The cis geometry (two Re-X stretches) of ReX(2)(L)(2) is consistent with maximized Re(II)-L back-bonding. Both ReX(2)(L)(2) and Re(NAr)Cl(3)(L') are paramagnetic (S = (1)/(2)) and display sextet EPR spectra in solution. The g and A values of Re(NAr)Cl(3)(L') are, respectively, lower and higher than those of ReX(2)(L)(2). All the complexes are electroactive in acetonitrile solution. The Re(NAr)Cl(3)(L) species display the Re(VI)/Re(V) couple near 1.0 V versus SCE, and coulometric studies have revealed that, in the oxidative transformation of 3 to 4, the reactive intermediate is Re(VI)(NAr)Cl(3)(L)(+) which undergoes nucleophilic addition of water at an imine site followed by induced electron transfer finally affording 4. In the structure of 3 (R = H, R' = Ph, Ar = Ph), the Re-N bond lying trans to the chloride ligand is approximately 0.1 A shorter than that lying trans to NPh. It is thus logical that the imine function incorporating the former bond is more polarized and therefore subject to more facile nucleophilic attack by water. This is consistent with the regiospecificity of the imine oxidation as revealed by structure determination of 4 (R = H, R' = cycloheptyl, Ar = C(6)H(4)Cl).  相似文献   

2.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

3.
The rhenium oxo complex [Re(O)(hoz)2][TFPB], 1 (where hoz = 2-(2'-hydroxyphenyl)-2-oxazoline(-) and TFPB = tetrakis(pentafluorophenyl)borate) catalyzes the hydrosilation of aldehydes and ketones under ambient temperature and atmosphere. The major organic product is the protected alcohol as silyl ether. Isolated yields range from 86 to 57%. The reaction requires low catalyst loading (0.1 mol %) and proceeds smoothly in CH2Cl2 as well as neat without solvent. In the latter condition, the catalyst precipitates at the end of reaction, allowing easy separation and catalyst recycling. Re(O)(hoz)(H), 3, was prepared, and its involvement in an ionic hydrosilation mechanism was evaluated. Complex 3 was found to be less hydridic than Et3SiH, refuting its participation in catalysis. A viable mechanism that is consistent with experimental findings, rate measurements, and kinetic isotope effects (Et3SiH/Et3SiD = 1.3 and benzaldehyde-H/benzaldehyde-D = 1.0) is proposed. Organosilane is activated via eta2-coordination to rhenium, and the organic carbonyl adds across the coordinated Si-H bond [2 + 2] to afford the organic reduction product.  相似文献   

4.
Reaction of the proligand Ph2PN(SiMe3)2 (L1) with WCl6 gives the oligomeric phosphazene complex [WCl4(NPPh2)]n, 1 and subsequent reaction with PMe2Ph or NBu4Cl gives [WCl4(NPPh2)(PMe2Ph)] (2) or [WCl5(NPPh2)][NBu4] (3), respectively. DF calculations on [WCl5(NPPh2)][NBu4] show a W=N double bond (1.756 A) and a P-N bond distance of 1.701 A, which combined with the geometry about the P atom suggests, there is no P-N multiple bonding. Reaction of L1 with [ReOX3(PPh3)2] in MeCN (X = Cl or Br) gives [ReX2(NC(CH3)P(O)Ph2)(MeCN)(PPh3)](X = Cl, 4, X = Br, 5) which contains the new phosphorylketimido ligand. It is bound to the rhenium centre with a virtually linear Re-N-C arrangement (Re-N-C angle = 176.6 degrees, when X = Cl) and there is multiple bonding between Re and N (Re-N = 1.809(7) A when X = Cl). The proligand Ph2PNHNMe2(L2H) reacts with [(C5H5)TiCl3] to give [(C5H5)TiCl2(Me2NNPPh2)] (6). An X-ray crystal structure of the complex shows the ligand (L2) is bound by both nitrogen atoms. Reaction of the proligands Ph2PNHNR2[R2 = Me2 (L2H), -(CH2CH2)2NCH3 (L3H), (CH2CH2)2CH2 (L4H)] with [{RuCl(mu-Cl)(eta6-p-MeC6H4iPr)}2] gave [RuCl2(eta6-p-MeC6H4iPr)L] {L = L2H (7), L3H (8), L4H (9)}. The X-ray crystal structures of 7-9 confirmed that the phosphinohydrazine ligand is neutral and bound via the phosphorus only. Reaction of complexes 7-9 with AgBF4 resulted in chloride ion abstraction and the formation of the cationic species [RuCl(6-p-MeC6H4iPr)(L)]+ BF4- {(L = L2H (10), L3H (11), L4H (12)}. Finally, reaction of complex 6 with [{RuCl(mu-Cl)(eta6-p-MeC6H4iPr)}2] gave the binuclear species [(eta6-p-MeC6H4iPr)Cl2Ru(mu2,eta3-Ph2PNNMe2)TiCl2(C5H5)], 13.  相似文献   

5.
Neutral and asymmetrical hydrazido(3-)rhenium(V) heterocomplexes of the type [Re(eta(2)-L(4))(L(n))(PPh(3))] (eta(2)-L(4) = NNC(SCH(3))S; H(2)L(1) = S-methyl beta-N-((2-hydroxyphenyl)ethylidene)dithiocarbazate, 1, H(2)L(2) = S-methyl beta-N-((2-hydroxyphenyl)methylidene)dithiocarbazate, 2) are prepared via ligand-exchange reactions in ethanolic solutions starting from [Re(V)(O)Cl(4)](-) in the presence of PPh(3) or from [Re(V)(O)Cl(3)(PPh(3))(2)]. The distorted octahedral coordination sphere of these compounds is saturated by a chelated hydrazido group, a facially ligated ONS Schiff base, and PPh(3). Reduction-substitution reactions starting from [NH(4)][Re(VII)O(4)] in acidic ethanolic mixtures containing PPh(3) and H(2)L(n) (or its dithiocarbazic acid precursor H(3)L(4)) produce another example of chelated hydrazido(3-) rhenium(V) derivative, namely [Re(eta(2)-L(4))Cl(2)(PPh(3))(2)], 3. On the contrary, the N-methyl-substituted dithiocarbazic acid H(2)L(3) reacts with perrhenate to give the known nitrido complex [Re(N)Cl(2)(PPh(3))(2)]. Rhenium(V) complexes incorporating the robust eta(2)-hydrazido moiety represent key intermediates helpful for the comprehension of the reaction pathway which generates nitridorhenium(V) species starting from oxo precursors. An essential requirement for the stabilization of such chelated hydrazido-Re(V) units is the triple deprotonation at the hydrazine nitrogens, thereby providing efficient pi-electron circulation in the resulting five-membered ring. The thermal stability of these units is affected by the nature of the anchoring donor, thione sulfur ensuring stronger chelation than nitrogen and oxygen. The eta(2)-hydrazido complexes are characterized by conventional physicochemical techniques, including the X-ray crystal structure determination of 1 and 3.  相似文献   

6.
Pyridine-2-carboxylic acid, pyridine-2,3-dicarboxylic acid, and pyridine-2,4-dicarboxylic acid or their [(Ph(3)P)(2)N](+) salts react with the triply bonded dirhenium(II) complex Re(2)Cl(4)(mu-dppm)(2) (dppm = Ph(2)PCH(2)PPh(2)) in refluxing ethanol to afford unsymmetrical substitution products of the type Re(2)(eta(2)-N,O)Cl(3)(mu-dppm)(2), where N,O represents a chelating pyridine-2-carboxylate ligand (N,O = O(2)C-2-C(5)H(4)N (1), O(2)C-2-C(5)H(3)N(-3-CO(2)Et) (3), or O(2)C-2-C(5)H(3)N(-4-CO(2)H) (4)). The carboxylate groups in the 3- and 4- positions are not bound to the metal centers; in the case of 3 this group undergoes esterification in the refluxing ethanol solvent. Structure determinations have shown that 1, 3, and 4 possess similar structures in which there is an axial Re-O (carboxylate) bond (collinear with the Re(triple bond)Re bond) and the mu-dppm ligands are bound in a trans,cis fashion to the two Re atoms which have the ligand atom arrangement [P(2)NOClReReCl(2)P(2)]. The tridentate dianionic pyridine-2,6-dicarboxylate ligand (dipic) reacts with Re(2)Cl(4)(mu-dppm)(2) in ethanol at room temperature to give a compound Re(2)(dipic)Cl(2)(mu-dppm)(2) (6) in which the dipic ligand is bound in a symmetrical eta(3)-(O,N,O) fashion to one Re atom, with the N atom in an axial position (collinear with the Re(triple bond)Re bond) and with preservation of the same trans,trans coordination of the mu-dppm ligands that is present in Re(2)Cl(4)(mu-dppm)(2). Under reflux conditions, this kinetic product isomerizes to the thermodynamically favored isomer 5 with an unsymmetrical structure in which the dipic ligand chelates to one Re atom (as in 1, 3, and 4) and uses its other carboxylate group to bridge to the second Re atom. The isomerization of 6 to 5, which also results in a change in the coordination of the pair of mu-dppm ligand to trans,cis, is believed to occur by a partial "merry-go-round" process, a mechanism that probably explains the structures of the thermodynamic products 1, 3, and 4. The reaction of Re(2)Cl(4)(mu-dppm)(2) with pyridine-3-carboxylate gives the trans isomer of Re(2)(mu:eta(2)-O(2)C-3-C(5)H(4)N)(2)Cl(2)(mu-dppm)(2) (2) in which a pair of carboxylate bridges are present and the pyridine N atom is not coordinated. Single-crystal X-ray structural details are reported for 1-6.  相似文献   

7.
The concerned azooximes (L1OH, 1) are of type p-X-C6H4C(N2Ph)(NOH) (X = H, Me, Cl). The reaction of [Re(MeCN)Cl3(PPh3)2] with [Ag(L1OH)(L1O)] in cold dichloromethane-acetonitrile solvent has furnished the green colored ionized azoimine complex [ReV(O)Cl(PPh3)2(L1)](PF6), 2. In effect L1O- has undergone oxidative addition, the oxygen atom being transferred to the metal site. Upon treatment of [ReV(NPh)Cl3(PPh3)2] with L1OH in solution, the neutral azoimine complex [ReV(NPh)Cl3(L1H)], 3, resulted due to the spontaneous transfer of the oxime oxygen atom to a PPh3 ligand, which is eliminated as OPPh3. In contrast, the oxime of 2-acetylpyridine (L2OH, 4) did not undergo oxygen atom transfer and simply afforded the imine-oxime complex [ReV(NC6H4Y)Cl2(PPh3)(L2O)], 5, upon reacting with [ReV(NC6H4Y)Cl3(PPh3)2] (Y = H, Me, Cl). The spectral and electrochemical properties of 2, 3, and 5 and the structures of three representative compounds are reported. In the cation of 2 (X = H) the two PPh3 ligands lie trans to each other and the equatorial plane is defined by the five-membered azoimine chelate ring and the oxo and chloro ligands. The oxo ligand which forms a model triple bond (Re-O length 1.616(6) A) lies cis to the imine-N atom. In 3 (X = Cl) the ReCl3 fragment has meridional geometry and the imido nitrogen lies trans to the imine nitrogen of the planar azoimine chelate ring. In 5 x H2O (Y = Me), the Cl, oximato-N, and P atoms define an equatorial plane and the pyridine-N lies trans to the imido-N. The water of crystallization is hydrogen bonded to the oximato oxygen atom (O...O, 2.829(5) A). Reaction models in which chelation of the azooxime precedes oxygen atom transfer are proposed on the basis of oxophilicity of trivalent rhenium, Lewis acid activity of pentavalent rhenium, electron withdrawal by the azo group, and observed relative disposition of ligands in products.  相似文献   

8.
The reaction of a trinuclear rhenium sulfide cluster compound Re3S7Cl7 with dimethylphenylphosphine and CuX2 (X = Cl or Br) or CuX (X = Cl, Br, or I) formed tetranuclear cluster complexes [(Ph3P)2N][Re3(CuX)(mu3-S)4Cl6(PMe2Ph)3] (X = Cl, Br, or I). Their solutions have the characteristic intense blue color with visible spectral bands near 600 nm. Single-crystal X-ray structures show that three mu-S atoms in the intermediate trinuclear rhenium complex coordinate to a copper atom, forming elongated tetrahedral structures in which Re-Cu bonding interaction is negligible (Re-Cu distances are 3.50 to approximately 3.54 A as compared with Re-Re distances ranging from 2.69 to 2.81 A).  相似文献   

9.
A series of rhenium(V) complexes, [(X)(ReO)(dt)(PPh(3))] and [(o-SC(6)H(4)PPh(2))(ReO)(mtp)], were prepared to explore electronic effects on the C-S cleavage reaction that occurs upon reaction with PAr(3) at ambient temperature [where X = S(C(6)H(4)-p-Z) (Z = OMe, Me, H, F, Cl), OPh, Cl, and SC(2)H(5), and dt is the chelating dithiolate ligand derived from 2-(mercaptomethyl)thiophenol, 1,2-ethanedithiol, 1,3-propanedithiol, 1,3-butanedithiol, and 2,4-pentanedithiol]. The scope and selectivity of the C-S activation were examined. The C-S bond cleavage to form metallacyclic Re(V) complexes with a ReS core occurs only for the complexes with mtp and pdt frameworks and X = SAr and SC(2)H(5). The difference in reactivity is due to the different donating abilities of ancillary and dithiolate ligands, especially their pi-donating ability, which plays a critical role in C-S activation. The kinetics of the C-S activation process was determined; nucleophilic attack of PPh(3) on the oxo group of the Re(V)O core appears to be the rate-controlling step. The reaction is accelerated by electron-poor ArS ligands, but is unaffected by the substituents on phosphines. A detailed mechanistic study is presented. The results represent a rare example of migration of alkanethiolate leading to the formation of alkylthiolato complexes.  相似文献   

10.
Four novel rhenium complexes of formula [ReCl(4)(bpym)] (1), [ReBr(4)(bpym)] (2) PPh(4)[ReCl(4)(bpym)] (3) and NBu(4)[ReBr(4)(bpym)] (4) (bpym = 2,2'-bipyrimidine, PPh(4) = tetraphenylphosphonium cation and NBu(4) = tetrabutylammonium cation), have been synthesized and their crystal structures determined by single-crystal X-ray diffraction. The structures of 1 and 2 consist of [ReX(4)(bpym)] molecules held together by van der Waals forces. In both complexes the Re(iv) central atom is surrounded by four halide anions and two nitrogen atoms of a bpym bidentate ligand in a distorted octahedral environment. The structures of 3 and 4 consist of [ReX(4)(bpym)](-) anions and PPh(4)(+) () or NBu(4)(+) (4) cations. The coordination sphere of the Re(iii) metal ion is the same as in 1 and 2, respectively. However, whereas the Re-X bonds are longer the Re-N bonds are shorter than in 1 and 2. This fact reveals that the bpym ligand forms a stronger bond with Re(iii) than with Re(iv) resulting in a stabilisation of the lower oxidation state. [ReX(4)(bpym)] complexes are easily reduced, chemically and electrochemically, to the corresponding [ReX(4)(bpym)](-) anions. A voltammetric study shows that the electron transference is a reversible process characterized by formal redox potentials of +0.19 V (1) and +0.32 V (2) vs. NHE, in acetonitrile as solvent.  相似文献   

11.
Reaction of [ReOCl3(PPh3)(2)] with HCpz(3) (pz = pyrazole) in dichloromethane leads to the formation of a new Re(iv) complex [ReCl3(HCpz3)]X (X=Cl, [ReO4]) with loss of the rhenium-oxo group. We also report a convenient, high-yield synthetic route to complexes of the type [ReOXn(L)](3-n)+ (X=Cl, Br, n = 2, 3) by the reaction of bis(pyrazolylmethane) and bis(pyrazolylacetate) ligands with [ReOCl3(PPh3)2]. Dinuclear complexes containing the O=Re-O-Re=O group were also isolated and structurally characterised. We have also investigated the reactions of these ligands with diazenide precursors and isolated and characterised complexes of the type [ReClx(N2Ph) (L)(PPh3)] (x = 1,2). The potential applications of these complexes as radiopharmaeuticals is discussed.  相似文献   

12.
Two-electron reduction occurs when the Re(V) precursors ReOX3(PPh3)2 and ReO(OEt)X2(PPh3)2 are reacted with biimidazole (biimH2) in boiling chloroform, affording rhenium(III) cationic complexes of the type cis,trans-[ReX2(PPh3)2(biimH2)]X with X = Cl, Br, and I. Crystal structures are determined for the compounds with the three halogens, as well as for the [ReCl2(PPh3)2(biimH2)](benzoate) salt. In all cases, the counterion is attached to the complex cation via hydrogen bonding with the N-H groups of coordinated biimidazole. Variable-temperature 1H NMR spectroscopy shows that a mixture of [ReCl2(PPh3)2(biimH2)](benzoate) and [ReCl2(PPh3)2(biimH2)]Cl is in slow exchange below -50 degrees C in CD2Cl2, indicating that ion pairing is retained in solution. Both N-H groups can be deprotonated with sodium methoxide, and their acidities are evaluated from UV-visible spectra. Competition between monodeprotonated [ReCl2(PPh3)2(biimH)] and various carboxylic acids reveals that the acidity of the first N-H proton corresponds to that of acetic acid (pKa(aq) approximately 4.8). By a similar competitive reaction between bis-deprotonated [ReCl2(PPh3)2(biim)]- and phenols, the second acidity is estimated to be close to that of phenol (pKa(aq) approximately 9.8).  相似文献   

13.
The reactions of methylacetoacetate and ethyl 2-methylacetoacetate thiosemicarbazones (H(2)L(A) and H(2)L(B), respectively) with [ReX(CO)(5)] and [ReX(CO)(3)(CH(3)CN)(2)] (X = Cl, Br) were explored under various experimental conditions. Besides the adducts fac-[ReX(CO)(3)(H(2)L)], in which the rhenium is coordinated to three carbonyl groups, the X anion, and the N,S-bidentate thiosemicarbazone ligand, the following complexes were also isolated: fac-[ReBr(CO)(3)(Hpyz(B))], the tetrameric complexes fac-[Re(pyz(A))(CO)(3)](4) and fac-[Re(pyz(B))(CO)(3)](4), and fac-[Re(pyz(B))(CO)(3)(H(2)O)] (where Hpyz(A) and Hpyz(B) are pyrazolones derived by cyclization of H(2)L(A) and H(2)L(B), respectively). The cyclization reactions were monitored by (1)H NMR spectroscopy and the complexes isolated were identified by elemental analysis, mass spectrometry, IR and (1)H NMR spectroscopy, and in some cases by X-ray diffractometry. The isolation and the full structural identification of the rather unusual fac-[ReBr(CO)(3)(Hpyz(B))], which contains the enol form of the pyrazolone ligand, affords new insight into the cyclization of thiosemicarbazones derived from beta-keto esters.  相似文献   

14.
[(Ru(eta(6)-p-cymene)(mu-Cl)Cl)(2)] and [(Ru(eta(3):eta(3)-C(10)H(16))(mu-Cl)Cl)(2)] react with Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2) (R = Et (1a), Ph (1b)) affording complexes [Ru(eta(6)-p-cymene)Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (2a), Ph (2b)) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (6a), Ph (6b)). While treatment of 2a with 1 equiv of AgSbF(6) yields a mixture of [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (3a) and [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,N-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (4a), [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OPh)(2)]Ph(2))][SbF(6)] (3b) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)] (R = Et (7a), Ph (7b)) are selectively formed from 2b and 6a,b. Complexes [Ru(eta(6)-p-cymene)(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (5a), Ph (5b)) and [Ru(eta(3):eta(3)-C(10)H(16))(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (8a), Ph (8b)) have been prepared using 2 equiv of AgSbF(6). The reactivity of 3-5a,b has been explored allowing the synthesis of [Ru(eta(6)-p-cymene)X(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et, Ph; X = Br, I, N(3), NCO (9-12a,b)). The catalytic activity of 2-8a,b in transfer hydrogenation of cyclohexanone, as well as theoretical calculations on the models [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,N-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+ and [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,O-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+, has been also studied.  相似文献   

15.
The complexes trans-[Rh(X)(XNC)(PPh 3) 2] (X = Cl, 1; Br, 2; SC 6F 5, 3; C 2Ph, 4; XNC = xylyl isocyanide) combine reversibly with molecular oxygen to give [Rh(X)(O 2)(XNC)(PPh 3) 2] of which [Rh(SC 6F 5)(O 2)(XNC)(PPh 3) 2] ( 7) and [Rh(C 2Ph)(O 2)(XNC)(PPh 3) 2] ( 8) are sufficiently stable to be isolated in crystalline form. Complexes 2, 3, 4, and 7 have been structurally characterized. Kinetic data for the dissociation of O 2 from the dioxygen adducts of 1- 4 were obtained using (31)P NMR to monitor changes in the concentration of [Rh(X)(O 2)(XNC)(PPh 3) 2] (X = Cl, Br, SC 6F 5, C 2Ph) resulting from the bubbling of argon through the respective warmed solutions (solvent chlorobenzene). From data recorded at temperatures in the range 30-70 degrees C, activation parameters were obtained as follows: Delta H (++) (kJ mol (-1)): 31.7 +/- 1.6 (X = Cl), 52.1 +/- 4.3 (X = Br), 66.0 +/- 5.8 (X = SC 6F 5), 101.3 +/- 1.8 (X = C 2Ph); Delta S (++) (J K (-1) mol (-1)): -170.3 +/- 5.0 (X = Cl), -120 +/- 13.6 (X = Br), -89 +/- 18.2 (X = SC 6F 5), -6.4 +/- 5.4 (X = C 2Ph). The values of Delta H (++) and Delta S (++) are closely correlated (R (2) = 0.9997), consistent with a common dissociation pathway along which the rate-determining step occurs at a different position for each X. Relative magnitudes of Delta H (++) are interpreted in terms of differing polarizabilities of ligands X.  相似文献   

16.
A trinuclear rhenium sulfide cluster complex, [(Ph(3)P)(2)N][Re(3)(mu(3)-S)(mu-S)(3)Cl(6)(PMe(2)Ph)(3)], synthesized from Re(3)S(7)Cl(7), dimethylphenylphosphine, and [(Ph(3)P)(2)N]Cl is readily converted to a bridging SO(2) complex, [(Ph(3)P)(2)N][Re(3)(mu(3)-S)(mu-S)(2)(mu-SO(2))Cl(6)(PMe(2)Ph)(3)], by reaction with O(2). The oxygen atoms on the SO(2) ligand react with phosphines or phosphites to form phosphine oxides or phosphates, and the original cluster complex is recovered. The reaction course has been monitored by (31)P NMR as well as by UV-vis spectroscopy. The catalytic oxygenation of PMePh(2) in the presence of the SO(2) complex shows that turnovers are 8 per hour at 23 degrees C in CDCl(3). The X-ray structures of the cluster complexes are described.  相似文献   

17.
A facile method is described for the synthesis of cationic Re(VII) cis oxo imido complexes of the form [Re(O)(NAr)(salpd)+] (salpd = N,N'-propane-1,3-diylbis(salicylideneimine)), 4, [Re(O)(NAr)(saldach)+] (saldach = N,N'-cyclohexane-1,3-diylbis(salicylideneimine)), 5, and [Re(O)(NAr)(hoz)2+] (hoz = 2-(2'-hydroxyphenyl)-2-oxazoline) (Ar = 2,4,6,-(Me)C(6)H(2); 4-(OMe)C(6)H(4); 4-(Me)C(6)H(4); 4-(CF3)C6H4; 4-MeC(6)H(4)SO(2)), 6, from the reaction of oxorhenium(V) [(L)Re(O)(Solv)+] (1-3) and aryl azides under ambient conditions. Unlike previously reported cationic Re(VII) dioxo complexes, these cationic oxo imido complexes can be obtained on a preparative scale, and an X-ray crystal structure of [Re(O)(NMes)(saldach)+], 5a, has been obtained. Despite the multiple stereoisomers that could arise from tetradentate ligation of salen ligands to rhenium, one major isomer is observed and isolated in each instant. The electronic rationalization for stereoselectivity is discussed. Investigation of the mechanism suggests that the reactions of Re(V) with aryl azides proceed through an azido adduct similar to the group 5 complexes of Bergman and Cummins. Treatment of the cationic oxo imido complexes with a reductant (PAr(3), PhSMe, or PhSH) results in oxygen atom transfer (OAT) and the formation of cationic Re(V) imido complexes. [(salpd)Re(NMes)(PPh(3))(+)] (7) and [(hoz)2Re(NAr)(PPh(3))(+)] (Ar = m-OMe phenyl) (9) have been isolated on a preparative scale and fully characterized including an X-ray single-crystal structure of 7. The kinetics of OAT, monitored by stopped-flow spectroscopy, has revealed rate saturation for substrate dependences. The different plateau values for different oxygen acceptors (Y) provide direct support for a previously suggested mechanism in which the reductant forms a prior-equilibrium adduct with the rhenium oxo (ReVII = O<--Y). The second-order rate constants of OAT, which span more than 3 orders of magnitude for a given substrate, are significantly affected by the electronics of the imido ancillary ligand with electron-withdrawing imidos being most effective. However, the rate constant for the most active oxo imido rhenium(VII) is 2 orders of magnitude slower than that observed for the known cationic dioxo Re(VII) [(hoz)2Re(O)(2)(+)].  相似文献   

18.
Benzil bis(semicarbazone), H2L(1), reacts with common rhenium(V) nitrido complexes such as [ReNCl2(PPh3)2] or [ReNCl2(PR2Ph)3] (R = Me, Et) under the release of one semicarbazone unit, cyclization, and formation of stable triazine-3-onato complexes of rhenium(V). The resulting 5,6-diphenyltriazine-3-one, HL (2), acts as monodentate or chelating, monoanionic ligand depending on the reaction conditions applied. Complexes of the compositions [ReNCl(L(2)-kappaN(2),kappaO)(PR2Ph)2] (R = Me, Et) or [ReN(L(2)-kappa N(2),O)(L(2)-kappaN(2))(PPh3)2] were isolated. The N(2) nitrogen atom is the preferred binding site of the monodentate form of the ligand. This contrasts the behavior of the analogous thione HL(3), which preferably coordinates to nitridorhenium(V) centers via the sulfur atom. HL(3) is readily formed by the abstraction of methanol from 5-methoxy-5,6-diphenyl-4,5-dihydro-2H-[1,2,4]triazine-3-thione, H2L(3)OCH 3. In the presence of [ReNCl2(PPh3)2] or [ReNCl2(PR2Ph)3] complexes (R = Me, Et), this reaction yields stable complexes of the composition [ReN(L(3)-kappaN(2),kappaS)(L(3)-kappaS)(PR2Ph)2] (R = Me, Et, Ph) in good yields. Reduction of the metal atom and formation of the seven-coordinate [Re(PPh3)(L(3)-kappaN(2),kappaS)3] was observed during reactions of H2L(3)OCH3 with [ReOCl3(PPh3)2] or [ReO2I(PPh3)2], while no rhenium complexes could be isolated during similar reactions with H2L(1), although cyclization of the bis(semicarbazone) and the formation of H 2L(2)OEt were observed.  相似文献   

19.
New N,N '-bis(4-((4-alkoxybenzoyl)oxy)phenyl)-1,4-diaza-1,3-butadiene (L) ligands, obtained by condensation of 4-((alkoxybenzoyl)oxy)anilines and glyoxal, were complexed to different [ReX(CO)(3)] fragments to give the complexes [ReX(L)(CO)(3)] (X = Cl, Br, I) and [Re(CF(3)SO(3))(L)(CO)(3)].THF. The chloro and bromo complexes were obtained by direct reaction of the ligands with [ReX(CO)(5)] (X = Cl, Br), while the iodo and triflato derivatives were obtained via metathesis of the chloro or bromo precursors with potassium iodide or silver triflate respectively. The liquid-crystalline behavior of the ligands and the related rhenium complexes has been studied by means of optical microscopy, differential scanning calorimetry, and small angle X-ray diffraction. Nematic and smectic C phases were observed when the coordinated counteranions were Cl, Br, and I, respectively; the triflato derivatives were not mesomorphic.  相似文献   

20.
The synthesis and reactivity of a series of complexes of the (DippN=)(3)Re (Dipp = 2,6-(i)Pr(2)C(6)H(3)) fragment are reported. The anionic, Re(V) complex (THF)(2)Li(micro,micro-NDipp)(2)Re(=NDipp) (1), prepared by the reaction of (DippN=)(3)ReCl with (THF)(3)LiSi(SiMe(3))(3) or (t)BuLi (2 equiv) in the presence of THF (4 equiv), served as an important starting material for the synthesis of rhenium-element-bonded complexes. For example, treatment of 1 with ClSiR(3) gave the corresponding silyl complexes (DippN=)(3)ReSiR(3) (SiR(3) = SiMe(3) (2a), SiHPh(2) (2b), SiH(2)Ph (2c)). Complexes 2a-c are thought to exist in equilibrium between the Re(VII) (DippN=)(3)ReSiR(3) and Re(V) (DippN=)(2)ReN(SiR(3))Dipp isomers. Complexes 2a,b reacted with PhSiH(3) to give reaction mixtures that included 2c, Ph(2)SiH(2), SiH(4), and C(6)H(6). The silane and organic products arise from Si-C bond formation and cleavage. Treatment of 2a with CO gave (DippN=)(2)Re[N(SiMe(3))Dipp](CO) (3), which appears to result from trapping of the reactive Re(V) isomer of 2a by CO. Complex 1 reacted with the main group halides MeI, Ph(3)GeCl, Me(3)SnCl, Ph(2)PCl, and PhSeCl to give the corresponding rhenium complexes (DippN=)(3)ReER(n) (ER(n)() = Me (4), GePh(3) (5), SnMe(3) (6), PPh(2) (7), SePh (8)) in high yields. X-ray diffraction data for 5 indicate that the germyl ligand is bonded to rhenium, but positional disorder of the phenyl and Dipp groups prevented refinement of accurate metric parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号