首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on an original technique for the in situ coating of poly(dimethylsiloxane) (PDMS) microchannels with borosilicate glass, starting from an active nonaqueous and alkali-free precursor solution. By chemical reaction of this active solution inside the microchannel and subsequent thermal annealing, a protective and chemically inert glass borosilicate coating is bonded to the PDMS. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and nuclear magnetic resonance spectroscopy of the active solution show that it is composed of a silicon oxide network with boron connectivity. Thermal gravimetric analysis demonstrates the absence of organic content when curing is done above 150 degrees C. The borosilicate nature of the glass coating covalently bonded to the PDMS is demonstrated using ATR-FTIR spectroscopy and X-ray photoelectron spectroscopy. Atomic force microscopy and scanning electron microscopy show a smooth and crack-free coating. The latter is used as an efficient protective barrier against diffusion in PDMS of fluorescent rhodamine B dye that is dissolved either in water or in toluene. Moreover, the coating prevents swelling and consequent structural damage of the PDMS when the latter is exposed to harsh chemicals such as toluene.  相似文献   

2.
Applications of poly(dimethylsiloxane) (PDMS)-based microfluidic systems are more popular nowadays. Previous fabrication methods of the masters for PDMS microchannels require complicated steps and/or special device. In this paper, we demonstrated that the toner printed on the transparency film with the office laser printer (1200 dpi) can be used as the positive relief of the masters. The transparency film was printed in two steps in order to obtain the same printing quality for the crossed lines. With the laser-printed master, the depth of the fabricated PDMS microchannels was ca. 10 microm and the smallest width was ca. 60 microm. Surface characteristics of the PDMS/PDMS microchannels were performed with SEM. Their electrokinetic properties were investigated by the aids of the measurement of electroosmotic flow (EOF) and the Ohm's curve. Using the PDMS/PDMS microchip CE systems, electroactive biological molecules and non-electroactive inorganic ions were well separated, respectively. This simple approach could make it easy to carry out the studies of PDMS microfluidic systems in more general labs without special devices.  相似文献   

3.
Yu H  Meyvantsson I  Shkel IA  Beebe DJ 《Lab on a chip》2005,5(10):1089-1095
Understanding the interaction between soluble factors and cells in the cellular microenvironment is critical to understanding a wide range of diseases. Microchannel culture systems provide a tool for separating diffusion and convection based transport making possible controlled studies of the effects of soluble factors in the cellular microenvironment. In this paper we compare the proliferation kinetics of cells in traditional culture flasks to those in microfluidic channels, and explore the relationship between microchannel geometry and cell proliferation. PDMS (polydimethylsiloxane) microfluidic channels were fabricated using micromolding methods. Fall armyworm ovarian cells (Sf9) were homogeneously seeded in a series of different sized microchannels and cultured under a no flow condition. The proliferation rates of Sf9 cells in all of the microchannels were slower than in the flask culture over the first 24 h of culture. The proliferation rates in the microchannels then continuously decreased reaching 5% of that in the flasks over the next 48 h and maintained this level for 5 days. This growth inhibition was reversible and influenced only by the cell seeding density and the channel height but not the channel length or width. One possible explanation for the observed dimension-dependent cell proliferation is the accumulation of different functional molecules in the diffusion dominant microchannel environment. This study provides insights into the potential effects of the diffusion of soluble factors and related effects on cell behavior in microenvironments relevant to the emerging use of microchannel culture systems.  相似文献   

4.
In this paper we present our first results on the realization of stable water/octanol, two-phase flows inside poly(dimethylsiloxane) (PDMS) microchannels. Native PDMS microchannels were coated with high molecular weight polymers to change the surface properties of the microchannels and thus stabilize the laminar flow profile. The polymers poly(2-hydroxyethyl methacrylate), poly(vinyl pyrrolidone), poly(ethylene oxide), poly(ethylene glycol), and poly(vinyl alcohol) were assessed for their quality as stabilization coatings after deposition from flowing and stationary solutions. Additionally, the influence of coating the microchannels homogeneously with a single kind of polymer or heterogeneously with two different polymers was investigated. From the experimental observations, it can be concluded that homogeneous polymer coatings with poly(2-hydroxyethyl methacrylate) and poly(vinyl pyrrolidone) led to the effective stabilization of laminar water/octanol flows. Furthermore, heterogeneous coatings led to two-phase flows which had a better-defined and more stable interface over long distances (i.e., 40-mm-long microchannels). Finally, the partitioning of fuchsin dye in the coated microchannels was demonstrated, establishing the feasibility of the use of the polymer-coated PDMS microchannels for determination of logP values in laminar octanol/water flows.  相似文献   

5.
A method has been developed for rapidly separating and detecting strychnine and brucine using a poly(dimethysiloxane) (PDMS) microchip and electrochemical (EC) detection. PDMS microchannels dynamically modified by Brij35 are shown to be more efficient than native ones. The two analytes are well separated within 90 s in 70 mmol/L acetate buffer (pH 5.5) containing 0.01% (v/v) Brij35. Detection limits were found to be 1.0 μmol/L for strychnine and 0.2 μmol/L for brucine at S/N=3. The method was used to determine trace strychnine and brucine in rat serum, and the results obtained correlate well with those obtained via high-performance liquid chromatography (HPLC).   相似文献   

6.
SU-8 and polydimethylsiloxane (PDMS) are both transparent materials with properties very convenient for rapid prototyping of microfluidic systems. However, previous efforts of combining these two materials failed due to poor adhesion between them. Herein, we introduce a promising low-temperature technique (< 100 °C) to irreversibly bond two or more structured layers of SU-8 and PDMS to create hybrid stacks. This offers new possibilities in design and fabrication of enclosed three-dimensional microstructures and microchannels with simple soft-lithography techniques. The potential of this method is demonstrated by the fabrication of a new version of our microfluidic sensor cartridge that was reported recently1.  相似文献   

7.
This paper presents a study in which different commonly used microchip materials (silicon oxide, borosilicate glass, and PDMS) were analyzed for their effect on human promyelocytic leukemic (HL60) cells. Copper-coated silicon was analyzed for its toxicity and therefore served as a positive control. With quantitative PCR, the expression of the proliferation marker Cyclin D1 and the apoptosis marker tissue transglutaminase were measured. Flow cytometry was used to analyze the distribution through the different phases of the cell cycle (propidium iodide, PI) and the apoptotic cascade (Annexin V in combination with PI). All microchip materials, with the exception of Cu, appeared to be suitable for HL60 cells, showing a ratio apoptosis/proliferation (R(ap)) comparable to materials used in conventional cell culture (polystyrene). These results were confirmed with cell cycle analysis and apoptosis studies. Precoating the microchip material surfaces with serum favor the proliferation, as demonstrated by a lower R(ap) as compared to uncoated surfaces. The Cu-coated surface appeared to be toxic for HL60 cells, showing over 90% decreased viability within 24 h. From these results, it can be concluded that the chosen protocol is suitable for selection of the cell culture material, and that the most commonly used microchip materials are compatible with HL60 culturing.  相似文献   

8.
Forry SP  Locascio LE 《Lab on a chip》2011,11(23):4041-4046
Carbon dioxide partial pressure (P(CO(2))) was controlled on-chip by flowing pre-equilibrated aqueous solutions through control channels across the device. Elevated P(CO(2)) (e.g. 0.05 atm) was modulated in neighboring stagnant channels via equilibration through the highly gas permeable substrate, poly(dimethylsiloxane) (PDMS). Stable gradients in P(CO(2)) were demonstrated with a pair of control lines in a source-sink configuration. P(CO(2)) equilibration was found to be sufficiently rapid (minutes) and stable (days) to enable long-term microfluidic culture of mammalian cells. The aqueous solutions flowing through the device also mitigated pervaporative losses at sustained elevated temperatures (e.g. 37 C), as compared to flowing humidified gas through the control lines to control P(CO(2)). Since pervaporation (and the associated increase in osmolality) was minimized, stopped-flow cell culture became possible, wherein cell secretions can accumulate within the confined environment of the microfluidic culture system. This strategy was utilized to demonstrate long-term (> 7 days) microfluidic culture of mouse fibroblasts under stopped-flow conditions without requiring the microfluidic system to be placed inside a cell culture incubator.  相似文献   

9.
Sia SK  Whitesides GM 《Electrophoresis》2003,24(21):3563-3576
This review describes microfluidic systems in poly(dimethylsiloxane) (PDMS) for biological studies. Properties of PDMS that make it a suitable platform for miniaturized biological studies, techniques for fabricating PDMS microstructures, and methods for controlling fluid flow in microchannels are discussed. Biological procedures that have been miniaturized into PDMS-based microdevices include immunoassays, separation of proteins and DNA, sorting and manipulation of cells, studies of cells in microchannels exposed to laminar flows of fluids, and large-scale, combinatorial screening. The review emphasizes the advantages of miniaturization for biological analysis, such as efficiency of the device and special insights into cell biology.  相似文献   

10.
We describe a method based on plasma polymerization for the modification and control of the surface properties of poly(dimethylsiloxane) (PDMS) surfaces. By depositing plasma polymerized acrylic acid coatings on PDMS, we succeeded to fabricate stable (several days) hydrophilic and patterned hydrophobic/hydrophilic surfaces. We used this approach to generate direct and (for the first time in this material) double emulsions in PDMS microchannels.  相似文献   

11.
This paper reports on the study of electroosmotic flow (EOF) in poly(dimethylsiloxane) (PDMS) microchannels on the basis of indirect amperometric detection method. Gradual increase of EOF rate in freshly prepared PDMS microchannels was observed with the running buffer of phosphate buffer solution (PBS). With the same concentration (10 mM) of PBS containing different cations and the same pH value (7.0) and, the time of the stable EOF in PDMS microchannels under the applied separation voltage of 1000 V was 49.8 s (Li+ -PBS), 57.1 s (Na+ -PBS), 91 s (K+ -PBS), respectively. Meanwhile, the different adsorption of cations (Li+, Na+ and K+) on hydrophobic PDMS wall was observed through their separation in PDMS microchannels. Such experimental results demonstrated that the EOF in PDMS microchannels came from the cations and anions adsorbed on PDMS wall. This study would not only help us understand the surface state of PDMS, but also provide a useful guidance for establishing the effective surface modification methods in PDMS microchip CE.  相似文献   

12.
Microfluidic devices have been used to study high-density cultures of many cell types. Because cell-to-cell signaling is local, however, there exists a need to develop culture systems that sustain small numbers of neurons and enable analyses of the microenvironments. Such cultures are hard to maintain in stable form, and it is difficult to prevent cell death when using primary mammalian neurons. We demonstrate that postnatal primary hippocampal neurons from rat can be cultured at low densities within nanoliter-volume microdevices fabricated using polydimethylsiloxane (PDMS). Doing so requires an additional fabrication step, serial extractions/washes of PDMS with several solvents, which removes uncrosslinked oligomers, solvent and residues of the platinum catalyst used to cure the polymer. We found this step improves the biocompatibility of the PDMS devices significantly. Whereas neurons survive for > or = 7 days in open channel microdevices, the ability to culture neurons in closed-channel devices made of untreated, native PDMS is limited to < or = 2 days. When the closed-channel PDMS devices are extracted, biocompatibility improves allowing for reliable neuron cultures at low densities for > or = 7 days. Comparisons made to autoclaved PDMS and native, untreated PDMS reveal that the solvent-treated polymer is superior in sustaining low densities of primary neurons in culture. When neuronal affinity for local substrates is observed directly, we find that axons localize to channel corners and prefer PDMS surfaces to glass in hybrid devices. When perfusing the channels with media by gravity flow, cultured hippocampal neurons survive for > or = 11 days. Extracting PDMS improves biocompatibility of microfluidic devices and thus enables the study of differentiation of identifiable neurons and the characterization of local extracellular signals.  相似文献   

13.
We present a simple and easy to handle PDMS microfluidic device for neuronal cell culture studies in three-dimensional hydrogel scaffolds. The hydrogel is structured in parallel layers to reconstruct cell layers close to the natural environment. Dissociated cortical neurons of embryonic rats have been cultured in 0.5% w/v agarose including 0.2% w/v alginate. The cells formed neurite networks through neighboring cell free hydrogel layers. The cell culture showed neurite outgrowth in the microfluidic channel over more than seven days in vitro without perfusion. Culturing neurons in hydrogel layers surrounded by a liquid phase containing culture medium resulted in denser neuronal networks.  相似文献   

14.
Cellular functions are frequently exploited as processing components for integrated chemical systems such as biochemical reactors and bioassay systems. Here, we have created a new cell-based microsystem exploiting the intrinsic pulsatile mechanical functions of cardiomyocytes to build a cellular micropump on-chip using cardiomyocyte sheets as prototype bio-microactuators. We first demonstrate cell-based control of fluid motion in a model microchannel without check valves and evaluate the potential performance of the bio-actuation. For this purpose, a poly(dimethylsiloxane) (PDMS) microchip with a microchannel equipped with a diaphragm and a push-bar structure capable of harnessing collective cell fluid mechanical forces was coupled to a cultured pulsating cardiomyocyte sheet, activating cell-based fluid movement in the microchannel by actuating the diaphragm. Cell oscillation frequency and correlated fluid displacement in this system depended on temperature. When culture temperature was increased, collective cell contraction frequency remained cooperative and synchronous but increased, while displacement was slightly reduced. We then demonstrated directional fluid pumping within microchannels using cantilever-type micro-check valves made of polyimide. A directional flow rate of nL min(-1) was produced. This cell micropump system could be further developed as a self-actuated and efficient mechanochemical transducer requiring no external energy sources for various purposes in the future.  相似文献   

15.
In this paper, we describe a simple method for fabrication of high quality poly(dimethylsiloxane) (PDMS)/glass microchip by twofold replica molding of PDMS. This technique first served to transfer the negative microchannels from the glass template to the PDMS substrate as a master, and then this PDMS master with positive microchannels was used to replicate the PDMS replica with negative microchannels. Finally, the PDMS replica was bound to a glass sheet by UV radiation. The fabricated microchips were successfully applied for the detection of C677T mutation from the human methylenetetrahydrofolate reductase gene.  相似文献   

16.
Control of surface properties in microfluidic systems is an indispensable prerequisite for successful bioanalytical applications. Poly(dimethylsiloxane) (PDMS) microfluidic devices are hampered from unwanted adsorption of biomolecules and lack of methods to control electroosmotic flow (EOF). In this paper, we propose different strategies to coat PDMS surfaces with poly(oxyethylene) (POE) molecules of varying chain lengths. The native PDMS surface is pretreated by exposure to UV irradiation or to an oxygen plasma, and the covalent linkage of POE-silanes as well as physical adsorption of a triblock-copolymer (F108) are studied. Contact angle measurements and atomic force microscopy (AFM) imaging revealed homogeneous attachment of POE-silanes and F108 to the PDMS surfaces. In the case of F108, different adsorption mechanisms to hydrophilic and hydrophobic PDMS are discussed. Determination of the electroosmotic mobilities of these coatings in PDMS microchannels prove their use for electrokinetic applications in which EOF reduction is inevitable and protein adsorption has to be suppressed.  相似文献   

17.
The integration of porous structures into microchannels is known to enable unique and useful separations both in electrophoresis and chromatography. Etched pillars and other nanostructures have received considerable interest in recent years as a platform for creating microchannels with pores tailored to specific applications. We present a versatile method for integration of three-dimensionally sculptured nano- and micro-structures into PDMS microchannels. Glancing angle deposition was used to fabricate nanostructures that were subsequently embedded in PDMS microchannels using a sacrificial resist process. With this technique, an assortment of structures made from a wide selection of materials can be integrated in PDMS microchannels; some examples of this versatility, including chiral and chevron nanostructures, are demonstrated. We also present a working device made using this process, separating 6/10/20 kbp and 10/48 kbp DNA mixtures in a DNA fractionator containing GLAD-deposited SiO(2) vertical posts as the separating medium. The separation mechanism was verified to resemble that found in prior fractionation devices, using total internal reflection fluorescence microscopy. GLAD fabrication enables insertion of three-dimensional structures into microchannels that cannot be fabricated with any existing techniques, and this versatility in structural design could facilitate new developments in on-chip separations.  相似文献   

18.
The electrophysiological characterisation of cultured neurons is of paramount importance for drug discovery, safety pharmacology and basic research in the neurosciences. Technologies offering low cost, low technical complexity and potential for scalability towards high-throughput electrophysiology on in vitro neurons would be advantageous, in particular for screening purposes. Here we describe a plastic culture substrate supporting low-complexity multi-unit loose-patch recording and stimulation of developing networks while retaining manufacturability compatible with low-cost and large-scale production. Our hybrid polydimethylsilane (PDMS)-on-polystyrene structures include chambers (6 mm in diameter) and microchannels (25 microm x 3.7 microm x 1 mm) serving as substrate-embedded recording pipettes. Somas are plated and retained in the chambers due to geometrical constraints and their processes grow along the microchannels, effectively establishing a loose-patch configuration without human intervention. We demonstrate that off-the-shelf voltage-clamp, current-clamp and extracellular amplifiers can be used to record and stimulate multi-unit activity with the aid of our dishes. Spikes up to 50 pA in voltage-clamp and 300 microV in current-clamp modes are recorded in sparse and bursting activity patterns characteristic of 1 week-old hippocampal cultures. Moreover, spike sorting employing principal component analysis (PCA) confirms that single microchannels support the recording of multiple neurons. Overall, this work suggests a strategy to endow conventional culture plasticware with added functionality to enable cost-efficient network electrophysiology.  相似文献   

19.
A simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS) is presented. A coating of liquid PDMS is applied on the walls of rectangular microchannels, fabricated using standard soft-lithography, by introducing a pressurized air stream inside the PDMS filled microchannels. Surface tension of the liquid PDMS forces the coating to take a circular cross-section which is preserved by baking the device to cure the coated layer. Diameters ranging from a few micrometres to a few hundreds of micrometres were achieved. The method was verified to work on microchannel networks as well as in straight channels. Different coating conditions were systematically tested. Design curves are reported for one to choose appropriate coating conditions for obtaining a desired diameter. A comparison between the performance of square and circular microchannels in trapping SiHa cells (cervical cancer cell line) is shown.  相似文献   

20.
We have developed a technique for fabricating microfluidic devices from gelatin using a natural crosslinking process. Gelatin, crosslinked with the naturally occurring enzyme transglutaminase is molded to produce microchannels suitable for adherent cell culture and analysis. The autofluorescence of the material was shown to be minimal and within the range of typical background, ensuring utility with analyses using fluorescent dyes and labels would not be affected. Also, normal murine mammary epithelial cells were successfully cultured in the microchannels. The morphology of these adherent epithelial cells was shown to be significantly different for cells grown on rigid tissue culture plastic in either macro- or microscale cultures (even in the presence of a surface coating of gelatin) than those grown on the flexible crosslinked gelatin microchannels. Using these devices, the effects of both the extracellular matrix and soluble factors on cellular behavior and differentiation can be studied in microenvironments that more closely mimic the in vivo environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号