首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work we report some new nonclassical carbonyls of iridium formed after CO adsorption on Ir-ZSM-5 (Ir-MFI). Mainly Ir+ cations were found on sample activated at 523 K and reduced by CO at the same temperature. With CO they formed Ir+(CO)2 gem-dicarbonyls (2104 and 2033 cm(-1)) that decomposed at 673 K without leaving a measurable fraction of monocarbonyls. The dicarbonyl structure was established by 12CO-13CO coadsortpion experiments. In the presence of CO in the gaseous phase and at ambient temperature the Ir+(CO)2 dicarbonyls were converted into Ir+(CO)3 species (2182, 2099, and 2074 cm(-1)). At 100 K these complexes are able to accommodate a fourth CO molecule thus producing tetracarbonyls (2155, 2145, 2125, and 2105 cm(-1)). The results are explained by the high coordinative unsaturation of the Ir+ cations in the ZSM-5 matrix. This is also the reason for the formation of mixed Ir+(H2O)(CO)2 species after CO-H2O coadsorption (2087 and 2015 cm(-1)). Evacuation of the sample at 673 K, followed by treatment with CO at 523 K, generates Ir2+ cations. With CO these cations form another kind of geminal complex, namely, Ir2+(CO)2 species (2173 and 2129 cm(-1)). Here again, the structure was confirmed by 12CO-13CO coadsortpion experiments. These dicarbonyls are decomposed at 573 K (again without producing monocarbonyls) and are able to accommodate additionally neither CO nor water molecules. The results are explained by the smaller cationic radius of Ir2+ (as compared to Ir+), which is associated with a decrease of the number of ligands required for coordinative saturation.  相似文献   

2.
Au+(CO)n complexes are produced in the gas phase via pulsed laser vaporization, expanded in a supersonic jet, and detected with a reflectron time-of-flight mass spectrometer. Complexes up to n = 12 are observed, with mass channels corresponding to the n = 2 and n = 4 showing enhanced intensity. To investigate coordination and structure, individual complexes are mass-selected and probed with infrared photodissociation spectroscopy. Spectra in the carbonyl stretching region are measured for the n = 3-7 species, but no photodissociation is observed for n = 1, 2 due to the strong metal cation-ligand binding. The carbonyl stretch in these systems is blue-shifted 50-100 cm-1 with respect to the free CO vibration (2143 cm-1), providing evidence that these species are so-called "nonclassical" metal carbonyls. Theory at the MP2 and CCSD(T) levels provides structures for these complexes and predicted spectra to compare to the experiment. Excellent agreement is obtained between experiment and theory, establishing that the n = 3 complex is trigonal planar and the n = 4 complex is tetrahedral.  相似文献   

3.
薛志元  陈卫 《化学学报》1983,41(10):896-908
用红外光谱测定了碱度相近、构型不同的分子,如:氨、三乙胺和三正丁胺等及构型接近、碱度不同的分子,如:吡啶、2,6-二甲基吡啶和哌啶等在HY沸石的两种结构羟基上的吸附.通过升温热脱附的IR谱,观察了吸附分子的碱度和构型对质子酸强度的影响. 用红外光谱测定了HY沸石上HF和LF两种表面结构羟基吸附氨后的脱附热分别为22.2kcal/mol和18.9kcal/mol.  相似文献   

4.
Zeolites NaY and LaNaY (ion-exchanged with aqueous lanthanum nitrate solution) were used as adsorbents for removing organic sulfur compounds from model gasoline solutions (without and with toluene) and fluid catalytic cracked gasoline in fixed-bed adsorption equipment at room temperature and atmosphere pressure. The adsorptive selectivity for organic sulfur compounds was significantly increased when Na(+) ions in zeolite NaY were exchanged with lanthanum ions. IR spectra of thiophene adsorption indicate that thiophene is adsorbed onto La(3+) ions via direct S-La(3+) interaction and Na(+) ions via pi-electronic interaction for La(3+)-exchanged zeolite NaY, but only via pi-electronic interaction with Na(+) ions for NaY. The amount of adsorbed thiophene on La(3+)-exchanged zeolite Y was slightly decreased by coadsorption of benzene, but greatly reduced on NaY. The adsorption of thiophene via interaction with La(3+) on La(3+)-exchanged zeolite Y is hardly replaced by benzene coadsorption. The direct S-La(3+) interaction might be the essential reason for the evidently improved adsorptive selectivity of LaNaY for removing organic sulfur compounds from solutions containing large amount of aromatics.  相似文献   

5.
6.
Some spectroscopic characteristics of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae have been reported in this paper. The effect of temperature on the correlation parameters of chemical kinetics and thermodynamics of the binding reaction was investigated by using AAS. XRD diffraction pattern of gold-loaded biomass revealed that the Au3+ bound on the cell wall of the biomass had been reduced into gold particle. FTIR spectrophotometry on blank and gold-loaded biomass demonstrated that active groups such as the hydroxyl group of saccharides, and the carboxylate anion of amino-acid residues, from the peptidoglycan layer on the cell wall seem to be the sites for the Au3+ binding, and the free aldehyde group of the hemiacetalic hydroxyl group from reducing sugars, i.e. the hydrolysates of the polysaccharides on the peptidoglycan layer, serving as the electron donor, in situ reduced the Au3+ to Au0. XPS and IR characterizations of the interaction between glucose and Au3+ further supported that the reduction of Au3+ to Au0 can directly occur at the aldehyde group of the reducing sugars.  相似文献   

7.
A well-defined cluster containing 12 equivalent platinum atoms was prepared by ion exchange of an NaY zeolite, followed by hydrogen reduction. It was characterized by electron paramagnetic resonance (EPR) spectroscopy, hyperfine sublevel correlation (HYSCORE), and theoretical calculations. Combing the results of the experiments with density functional calculations, the likely structure of this cluster is icosahedral Pt13Hm, possibly with a low positive charge. The adsorbed H/D on the Pt cluster surface can be exchanged reversibly at room temperature. From H/D desorption experiments, an H2 binding energy of 1.36 eV is derived, in reasonable agreement with the calculated value but clearly larger than that for a (111) Pt single-crystal surface, revealing a finite size effect. While the hydrogen-covered cluster should clearly be regarded as a molecule, it is conceivable that the cluster adopts metallic character upon hydrogen desorption. It is likely that up to m=30 H atoms bind to this cluster with 12 surface atoms, which has important implications for the determination of the dispersion of small Pt catalyst particles by hydrogen chemisorption. Calculations as well as experiments give evidence of an interesting magnetic behavior with high-spin states playing a prominent role. There are strong indications that a reservoir of EPR silent but structurally similar clusters exists which can partly be converted to EPR visible species by H/D exchange or by gas adsorption.  相似文献   

8.
Variable temperature diffuse reflectance infrared spectroscopy is used to monitor the dehydration of sodium Linde type A zeolite (NaA). Between ambient temperature and 423 K, water desorbs from NaA α-cages. At 423 K, remaining NaA water molecules are primarily confined to β-cages. Variable temperature infrared difference spectra band shape and intensity trends reflect the influence of water-Na+ interactions and hydrogen bonding on α-cage water desorption mechanisms. Difference spectrum variations suggest that water loss is accompanied by rearrangement of the remaining NaA water molecules to establish new interactions and minimize potential energies. Water molecules that do not interact with Na+ form multiple water-water hydrogen bonds and attain near bulk water configurations. These waters desorb at the lowest temperatures. Most α-cage waters are involved in Na+ interactions. These water molecules participate in hydrogen bonding with neighboring water molecules, but opportunities diminish with increased dehydration, resulting in systematic temperature-dependent vibrational spectrum changes.  相似文献   

9.
A new material based on Er(3+)-exchanged zeolite L crystals, in which oxygen vacancies have been generated, is proposed as an efficient emitter in the near infrared third telecommunication window. The rare earth ions photoluminescence is efficiently generated by energy transfer from the excited oxygen vacancies, which act as wide range light harvesters. The proposed material can be excited in the whole Near UV-VIS-NIR spectral range from 355 to 700 nm, thus representing the first step toward versatile, zeolite based NIR sources that can be excited with white light.  相似文献   

10.
The mechanical properties of polymeric materials are of considerable importance to their engineering applications. Apart from the chemical structure and the thermal history, molecular orientation has a major influence on the mechanical properties of a polymer. The increased need for more detailed data and a better understanding of the mechanisms involved in polymer deformation has led to the search for new experimental techniques to characterize transient structural changes during mechanical processes. With the advent of rapid-scanning Fourier - transform infrared (FTIR) spectroscopy, simultaneous vibrational spectroscopic and mechanical (so-called rheo-optical) measurements during the deformation of polymers have emerged as a very informative probe for the study of deformation and relaxation phenomena in polymer films in the late seventies and have since then been applied to obtain data on strain-induced crystallization and orientational and conformational changes during mechanical treatment of a wide variety of polymers.  相似文献   

11.
Molecular dynamics simulations were performed in order to obtain a detailed understanding of the self-diffusion mechanisms of methanol in the zeolite NaY system. We derived a new force-field term to describe the interactions between the methanol molecules and the extraframework cations. From the simulations, we show that diffusive behavior in the high-temperature range consists of a combination of both short- and long-range motions at low and intermediate loadings. This type of motion is characterized by an activation energy that decreases as the loading increases. At low loadings, we also observe short-range diffusive behavior based on a surface-mediated mechanism. The short-range behavior corresponds to motion only on the length scale of an FAU supercage, whereas the long-range behavior involves intercage diffusion. For the saturation loading corresponding to 96 methanol molecules per unit cell, only short-range motions within the same supercage predominate. Finally, the preferential arrangement of the adsorbate molecules around the extraframework cations are examined and compared with those previously deduced from experimental data.  相似文献   

12.
13.
The acid properties of the Ca/NaY zeolite were investigated by means ofn-butylamine desorption and thermal decomposition, using both thermogravimetry (TG) and differential scanning calorimetry (DSC). The total acidity of the zeolite was calculated from the TG data, while DSC was used with the Borchardt-Daniels kinetic model to determine the relative acid strength of the catalyst, given in J per acid site. The enthalpies of these processes are proportional to the acid site strength in each specific temperature range.This work was supported by Conselho National de Desenvolvimento Científico e Tecnológico (CNPq). The authors are very grateful to M. L. C. Rodrigues and C. I. Braga, from D. P. Instrumentos Científicos.  相似文献   

14.
Intermolecular interactions in crystalline perylene films on Au(111) have been investigated by Fourier transform infrared spectroscopy. Dimer modes of vibrations are observed in the crystalline film, in contrast to the monomer modes found for isolated perylene molecules. These dimers are formed via hydrogen bonding in the sandwich herringbone structure of the crystalline α-phase. Davydov splitting of both the monomer and the dimer modes is observed due to resonance dynamic intermolecular interaction. The splitting of monomer modes into three distinct vibrations and the occurrence of the dimer modes confirm that the film crystallizes in the α phase, which is in line with the x-ray diffraction results. The frequency shift and band broadening at elevated temperature have been attributed to the cubic and quartic anharmonic interactions.  相似文献   

15.
Structures of nickel cluster ions adsorbed with methanol, Ni3+ (CH3OH)m (m = 1-3) and Ni4+ (CH3OH)m (m = 1-4) were investigated by using infrared photodissociation (IR-PD) spectroscopy based on a tandem-type mass spectrometer, where they were produced by passing Ni3,4+ through methanol vapor under a multiple collision condition. The IR-PD spectra were measured in the wavenumber region between 3100 and 3900 cm-1. In each IR-PD spectrum, a single peak was observed at a wavenumber lower by approximately 40 cm-1 than that of the OH stretching vibration of a free methanol molecule and was assigned to the OH stretching vibrations of the methanol molecules in Ni3,4+ (CH3OH)m. The photodissociation was analyzed by assuming that Ni3,4+ (CH3OH)m dissociate unimolecularly after the photon energy absorbed by them is statistically distributed among the accessible modes of Ni3,4+ (CH3OH)m. In comparison with the calculations performed by the density functional theory, it is concluded that (1) the oxygen atom of each methanol molecule is bound to one of the nickel atoms in Ni3,4+ (defined as molecular chemisorption), (2) the methanol molecules in Ni3,4+ (CH3OH)m do not form any hydrogen bonds, and (3) the cross section for demethanation [CH4 detachment from Nin+ (CH3OH)] is related to the electron density distribution inside the methanol molecule.  相似文献   

16.
Mixtures of ionic liquid (IL, 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4]) and water with varying concentrations were studied by attenuated total reflection infrared absorption and Raman spectroscopy. Changes in the peak intensities and peak positions of CHx (x = 1, 2, 3) vibration modes of the cation of the IL and OH vibration modes of the water molecules were investigated. Peaks from normal-mode stretch vibrations of CH bonds belonging to the imidazolium ring of the cation did not change their positions, while those from the terminal methyl group of the butyl chain blueshifted by approximately 10 cm-1 with the addition of water. On the other hand, change in the spectral shape in the OH stretch vibration region shows hydrogen-bonding network of water molecules breaking down rapidly as the IL is added. Trends in the change of the peak positions and the peak intensities suggested qualitative change of the intermolecular structure in the [BMIM][BF4] + H2O mixture at 32 +/- 2 and 45 +/- 2 mol/L of water concentration.  相似文献   

17.
NaY zeolite entrapped Ru3(CO)12 cluster has been synthesized from RuCl3 ion-exchanged NaY, which is well characterized by IR and Raman spectroscopies and CO chemisorp-tion. When the Ru3+/NaY sample is heated from 298 K to 393 K for 25 h and for 10 h at 393 K, the sample colour changes from dark to brown-yellow. The in situ infrared spectrum exhibits absorption bands at 2130, 2064, 2040, 2017, 1990, 1953 and 1925 cm-1. The bands at 2130 cm-1 arises from the Runm+(CO)l m =1-3;n = 1 - 3; l = 1-12). The bands at 2064, 2040, 2017 and 1990 cm-1 are proposed to be associated with the Ru3(CO)12/NaY, which are close to Ru3(CO)12 crystalline. Furthermore, the Raman results provide bands at 150 and 185 cm-1, which can be attributed to Ru-Ru bonds of the sample as in the case of Ru3(CO)12 crystalline, for which the A1' Ru-Ru stretching mode is assigned to 185 cm-1 and E1' Ru-Ru stretching mode is assigned to a band at 150 cm-1, respectively. CO chemisorption of [Ru3]/NaY gives a CO/Ru ratio of 3.85, which is simila  相似文献   

18.
Temperature dependence of equilibrium as well as dynamical properties of SF(6) in zeolite NaY have been investigated by molecular dynamics simulation. By about 200 K, SF(6) begins to have increased mobility. Strong orientational preference is exhibited by SF(6) during its passage through the 12-ring window, the bottleneck for diffusion. The preference is for orientation with C(3) followed by C(2) and then C(4) molecular symmetry axis perpendicular to the window plane. Translational motion is diffusive with an activation energy of 5.5 kJ/mol. Rotational-diffusion coefficient has an activation energy of 2.83 kJ/mol. Rotational motion is facile within the alpha-cage. Translational motion is hindered during passage through the 12-ring window when C(4) is perpendicular to the window plane. Orientational correlation functions P(1) and P(2) around C(2), C(3) and C(4) are reported. Only the long time decay of C(4) shows oscillations. This is attributed to the hindered rotation during intercage migration while passing through the 12-ring window.  相似文献   

19.
化学液相沉积法调变沸石孔径及异构体择形分离   总被引:4,自引:0,他引:4  
乐英红  唐颐  阚勇志  高滋 《化学学报》1996,54(6):591-597
本文用化学液相沉积方法精细调变NaY沸石孔径, 在适当的溶剂中硅酯与沸石吸附水或表面羟基作用而沉积于沸石外表面, 沸石孔口有效地被缩小。制备了一系列氧化硅沉积量不同的SiNaY沸石, 红外光谱、比表面和孔体积测量结果表明随着沉积量增加沸石孔径逐渐缩小, 但沸石骨架结构、孔容和内表面性质基本不变。测定了SiNaY样品对于对二甲苯/1, 3, 5-三甲苯, β-甲基萘/α-甲基萘, 1, 2, 4-三甲苯/1, 3, 5-三甲苯, 对二甲苯/间二甲苯和对甲酚/间甲酚五类分子尺寸不同的液体混合体系的择形吸附行为, 发现SiNaY沸石对分子尺寸与沸石孔径相近的混合体系具有良好的择形选择吸附分离性能。  相似文献   

20.
Mononuclear gold complexes synthesized from AuIII(CH3)2(acac) in zeolite NaY were characterized by time-resolved X-ray absorption spectroscopy and infrared spectroscopy as they catalyzed CO oxidation at 298 K and 760 Torr in flow systems. Initial contact with a CO + O2 mixture led to the rapid formation of cationic gold complexes in which Au was bonded to approximately two zeolite O atoms, on average. Further contact with CO + O2 led to breaking of an Au-surface oxygen bond, giving a gold carbonyl anchored to approximately one O atom. The process was reversed in the absence of CO and O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号