共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
On hydrodynamic instabilities,chaos and phase transition 总被引:2,自引:0,他引:2
Ellipticity as the underlying mechanism for instabilities of physical systems is highlighted in the study of model nonlinear
evolution equations with dissipation and the study of phase transition in Van der Waals fluid. Interesting results include
spiky solutions, chaotic behavior in the context of partial differential equations, as well as the nucleation process due
to ellipticity in phase transition. 相似文献
3.
Bacterial flagellar filaments can undergo a polymorphic phase transition in both vitro and vivo environments. Each bacterial flagellar filament has 12 different helical forms which are macroscopically represented by different pitch lengths and helix radii. For external mechanical force induced filament phase transitions, there is so far only one experiment performed by Hotani in 1982, who showed a very beautiful cyclic phase transition phenomenon in his experiment on isolated flagellar filaments. In the present paper, we give a detailed mechanical analysis on Hotani's experiments. Through theoretical computations, we obtained a phase transition rule based on the phase transition mechanism. The theoretical analysis provides a foundation facilitating the establishment of phase transition theory for bacterial flagellar filaments. 相似文献
4.
Flow of a fluid through a porous medium is considered with allowance for heat conduction processes and phase transitions. Discontinuities in flows between both single-phase zones saturated with water and steam and single-and two-phase zones saturated with an equilibrium steam-water mixture are studied. It is shown that only the evaporation fronts are evolutionary for a convex-downward shock adiabat of the discontinuity inside the steam-water mixture. The structure of these fronts is considered and a condition supplementary to the conservation laws and necessary for the well-posed formulation of problems whose solution contains this front is found from the condition of existence of a discontinuity structure between the water (steam) and the steam-water mixture. 相似文献
5.
6.
The incremental constitutive relation and governing equations with combined stresses for phase transition wave propagation in a thin-walled tube are established based on the phase transition criterion considering both the hydrostatic pressure and the deviatoric stress. It is found that the centers of the initial and subsequent phase transition ellipses are shifted along the σ-axis in the στ-plane due to the tension-compression asymmetry induced by the hydrostatic pressure. The wave solution offers the "fast" and "slow" phase transition waves under combined longitudinal and torsional stresses in the phase transition region. The results show some new stress paths and wave structures in a thin-walled tube with phase transition, differing from those of conventional elastic-plastic materials. 相似文献
7.
Determining liquid–vapor phase equilibrium is often required in multiphase flow computations. Existing equilibrium solvers are either accurate but computationally expensive or cheap but inaccurate. The present paper aims at building a fast and accurate specific phase equilibrium solver, specifically devoted to unsteady multiphase flow computations. Moreover, the solver is efficient at phase diagram bounds, where non‐equilibrium pure liquid and pure gas are present. It is systematically validated against solutions based on an accurate (but expensive) solver. Its capability to deal with cavitating, evaporating, and condensing two‐phase flows is highlighted on severe test problems both 1D and 2D. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
8.
The paper deals with a mathematical problem describing an exothermic chemical reaction in a diffusing substance possibly undergoing
a change of phase. Global well-posedness in the classical sense is proved for the corresponding system of PDEs. Moreover,
cases in which the phases are separated by sharp interphases or by transition regions are discussed. The limit case of negligible
diffusion is also considered.
Sommario Si studia il problema matematico che descrive una reazione chimica esotermica in una sostanza che diffonde e puo' subire cambiamenti di fase. Si dimostra esistenza globale in senso classico del relativo sistema di equazioni alle derivate parziali e si discute la possibilita' che le fasi siano separate da una regione di transizione e non da una netta superficie di interfase. Il caso limite di assenza di diffusione e' anche brevemente esaminato.相似文献
9.
Bacterial flagellar filament can undergo a stress-induced polymorphic phase transition in both vitro and vivo environments. The filament has 12 different helical forms (phases) characterized by different pitch lengths and helix radii. When subjected to the frictional force of flowing fluid, the filament changes between a left-handed normal phase and a right-handed semi-coiled phase via phase nucleation and growth. This paper develops non-local finite element method (FEM) to simulate the phase transition under a displacement-controlled loading condition (controlled helix-twist). The FEM formulation is based on the Ginzburg-Landau theory using a one-dimensional non-convex and non-local continuum model. To describe the processes of the phase nucleation and growth, viscosity-type kinetics is also used. The non-local FEM simulation captures the main features of the phase transition: two-phase coexistence with an interface of finite thickness, phase nucleation and phase growth with interface propagation. The non-local FEM model provides a tool to study the effects of the interfacial energy/thickness and loading conditions on the phase transition. 相似文献
10.
An approach to deal with movings and collisions of arbitrary many discontinuities in the conservative front tracking method is developed. Using this approach one may develop an "all-purposed and robust" front-tracking algorithm. The algorithm with this approach may have some inconsistency and thus will have O(1) magnitude errors in some grid cells at sometimes. Nevertheless, these errors will be eliminated by the conservation-preserving property of the front-tracking method in the following computation. Numerical examples are presented to illustrate the efficiency of the approach. 相似文献
11.
12.
Analytical solutions for diffuse interface propagation are found for two recently developed Landau potentials that account for the phenomenology of stress-induced martensitic phase transformations. The solutions include the interface profile and velocity as a function of temperature and stress tensor. An instability in the interface propagation near lattice instability conditions is studied numerically. The effect of material inertia is approximately included. Two methods for introducing an athermal interface friction in phase field models are discussed. In the first method an analytic expression defines the location of the diffuse interface, and the rate of change of the order parameters is required to vanish if the driving force is below a threshold. As an alternative and more physical approach, we demonstrate that the introduction of spatially oscillatory stress fields due to crystal defects and the Peierls barrier, or to a jump in chemical energy, reproduces the effect of an athermal threshold. Finite element simulations of microstructure evolution with and without an athermal threshold are performed. In the presence of spatially oscillatory fields the evolution self-arrests in realistic stationary microstructures, thus the system does not converge to an unphysical single-phase final state, and rate-independent temperature- and stress-induced phase transformation hysteresis are exhibited. 相似文献
13.
Relaxation of the Navier–Stokes–Korteweg equations for compressible two‐phase flow with phase transition 下载免费PDF全文
The Navier–Stokes–Korteweg (NSK) system is a classical diffuse‐interface model for compressible two‐phase flow. However, the direct numerical simulation based on the NSK system is quite expensive and in some cases even not possible. We propose a lower‐order relaxation of the NSK system with hyperbolic first‐order part. This allows applying numerical methods for hyperbolic conservation laws and removing some of the difficulties of the original NSK system. To illustrate the new ansatz, we first present a local discontinuous Galerkin method in one and two spatial dimensions. It is shown that we can compute initial boundary value problems with realistic density ratios and perform stable computations for small interfacial widths. Second, we show that it is possible to construct a semi‐discrete finite‐volume scheme that satisfies a discrete entropy inequality. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
14.
为了认识慢烤过程中初始空腔体积率对HMX基PBX-3炸药热致相变以及点火响应特性的影响,设计了小尺寸强约束慢烤实验装置。在相同温升速率下,开展了空腔体积率分别为1.0%、4.2%和13.8%的约束PBX-3炸药慢烤实验,获得了炸药内部不同位置以及约束壳体表面的温度演变历程,对炸药中HMX相变过程、初始空腔体积率对HMX相变影响的机制、HMX相变进程对点火反应温度的影响进行了详细分析。结果表明:初始空腔体积率越小,HMX相变吸热表现出的温度平台持续时间越短,点火时刻约束壳体表面的温度越高。分析认为初始空腔体积率越小,慢烤加热至HMX相变温度时刻,PBX-3炸药受到的热应力越大,延缓了慢烤过程中β-HMX转化为δ-HMX的相变进程;由于δ-HMX的热感度更高,慢烤实验过程中HMX的相变进程越慢,δ-HMX放热分解反应引起的热量积累越慢,炸药点火反应时刻约束壳体的温度越高。
相似文献15.
晶体硅具有复杂的相变机制,在相图研究中受到广泛关注,其在动载荷下的变形机制是当前研究热点。为揭示晶体硅在强动加载下的变形和相变行为特征,基于分子动力学方法,采用平板冲击加载方式,模拟研究了单晶硅在初始环境温度为300 K时分别沿[001]、[110]和[111]晶向的不同强度下的冲击压缩行为,冲击粒子速度为0.3~3.2 km/s。研究发现,随着冲击粒子速度的增加,单晶硅剪切应力在逐渐增加后由于结构相变发生急剧下降,相变阈值和相变机制均呈现各向异性。其中,沿[001]晶向冲击压缩下观察到多种固-固相变以及固-液相变,并观察到与最新文献的实验高度一致的固-液共存现象。研究结果可为动加载下晶体硅的相变研究提供纳米尺度的结果支撑。 相似文献
16.
A model of solid–solid phase transition involving dislocations in crystals is proposed within the nonlinear continuum dislocation theory (CDT). The co-existence of phases having piecewise constant plastic slip in laminates is possible for the two-well free energy density. The jumps of the plastic slip across the phase interfaces determine the surface dislocation densities at those incoherent boundaries. The number of phase interfaces should be determined by comparing the energy of dislocation arrays and the relaxed energy minimized among uniform plastic slips. 相似文献
17.
T. Bartel A. Menzel B. Svendsen 《Journal of the mechanics and physics of solids》2011,59(5):1004-1019
This paper focuses on the issue plasticity within the framework of a micromechanical model for single-crystal shape-memory alloys. As a first step towards a complete micromechanical formulation of such models, we work with classical J2-von Mises-type plasticity for simplicity. The modeling of martensitic phase transitions is based on the concept of energy relaxation (quasiconvexification) in connection with evolution equations derived from inelastic potentials. Crystallographic considerations lead to the derivation of Bain strains characterizing the transformation kinematics. The model is derived for arbitrary numbers of martensite variants and thus can be applied to any shape-memory material such as CuAlNi or NiTi. The phase transition model captures effects like tension/compression asymmetry and transformation induced anisotropy. Additionally, attention is focused on the interaction between phase transformations and plasticity in terms of the inheritance of plastic strain. The effect of such interaction is demonstrated by elementary numerical studies. 相似文献
18.
水下爆炸过程中存在着大量的空化现象,空化的产生、演化及其溃灭过程对于水下冲击波传播、爆炸气泡运动以及水下结构物冲击损伤都会产生重要影响。本文基于多相可压缩流体理论模型,考虑空化发生过程中汽-液两相流体亚平衡状态下两相之间发生的热力学-化学平衡机制,分析汽-液两相介质之间的质量和热量交换,从而实现对相变过程的自动捕捉。该系统的控制方程采用分步法处理,首先利用二阶MUSCL-Hancock格式和HLLC黎曼求解器来求解齐次双曲型方程,再采用牛顿迭代法求解相变方程。数值测试结果表明,本文的计算模型对于空化相变过程具有较好的捕捉能力。最后将该模型应用到水下近水面爆炸空化的数值模拟当中,研究发现空泡的溃灭压力峰值约为冲击波压力峰值的15%,有效作用时间是冲击波载荷有效作用时间的2倍以上。本文的空化相变模型能够为水下爆炸空化现象的机理研究提供重要支撑。 相似文献
19.
HR2钢及几种铁基材料的冲击相变行为 总被引:2,自引:0,他引:2
利用双灵敏度VISAR测量了抗氢钢HR2、工业纯铁DT2和铁锰镍合金FeMnNi在一维应变冲击载荷下的自由面速度历史,结合受载样品的回收分析对其动载行为和断裂表现进行了分析。研究表明,在实验加载压力范围内DT2和FeMnNi样品的自由面速度历史呈现包括相变波在内的典型三波结构,而对HR2钢,尽管金相分析显示其加载前后样品的相组织已发生变化,但速度剖面呈现的仅是典型的弹塑性双波结构。分析认为溶质材料成分和初始相组织是无相变波的主要原因。从冲击相变和卸载逆相变角度解释了在等厚靶碰撞时DT2和FeMnNi材料中出现的多重层裂、浅表层裂现象。 相似文献
20.
We study a fully inertial model of a martensitic phase transition in a one-dimensional crystal lattice with long-range interactions.
The model allows one to represent a broad range of dynamic regimes, from underdamped to overdamped. We systematically compare
the discrete model with its various continuum counterparts including elastic, viscoelastic and viscosity-capillarity models.
Each of these models generates a particular kinetic relation which links the driving force with the phase boundary velocity.
We find that the viscoelastic model provides an upper bound for the critical driving force predicted by the discrete model,
while the viscosity-capillarity model delivers a lower bound. We show that at near-sonic velocities, where inertia dominates
dispersion, both discrete and continuum models behave qualitatively similarly. At small velocities, and in particular near
the depinning threshold, the discreteness prevails and predictions of the continuum models cannot be trusted.
相似文献