首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five complexes: Cu(cap)2·4H2O, Zn(cap)2, Cd(cap)2·4H2O, Pb(cap)2 and Al(cap)3·4H2O (where cap is the caproate anion?=?CH3(CH2)4COO?) were synthesized and characterized by elemental analysis, IR-spectroscopy, thermogravimetric analysis (TG), differential thermal analysis (DTA), UV-Vis spectra, 1H NMR and X-ray powder diffraction (XRD). Using the non-isothermal, Horowitz-Metzger (HM) and Coats-Redfern methods, the kinetic parameters for the non-isothermal degradation of the complexes were calculated using TG data. The infrared and 1H NMR data are in agreement with coordination through carboxylate, with cap acting as a bridging bidentate ligand. Thermogravimetric analysis of the hydrated complexes shows that the first degradation step is release of water molecules followed by decomposition of the anhydrous complexes, with release of caproate molecules.  相似文献   

2.
The complexes formed between IE11 and Cd(II), Cr(III), Cu(II), Mn(II) and Pb(II) were identified and confirmed by IR, UV and pH-metric titration. The uptake behavior of porous silica modified with N-propylsalicylaldimine (IE11) and these metal ions were studied. Log k(d) was found to be within the range 2.19-5.16 depending on pH and time of stirring. IE11 was used in the separation and preconcentration of Cd(II), Cr(III, VI), Cu(II), Mn(II, VII) and Pb(II) from some natural water samples. Data were compared with those obtained by the solvent extraction method APDC/MIBK. The proposed methodology allows to verify an improvement in the water quality of Nile River probably attributed to high to moderate floods in the last few years. The method was found to be accurate and not subject to random error, i.e. precise.  相似文献   

3.
The chemically modified silica, obtained by reacting 2-mercaptobenz-imidazole with 3-chloropropyl silica gel, was used to adsorb Cu(II), Zn(II), Cd(II) and Pb(II) from aqueous solutions at various pH. Between pH 3–5, the order of selectivity was Hg(II) > Cd(II) Cu(II) Zn(II) Pb(II). Under batch conditions retentions of 100% were achieved for all metals except for Pb(II) where 93% was attained. Under column conditions recoveries of 100% were obtained for all metals.  相似文献   

4.
The adsorption of copper(II), zinc(II), nickel(II), lead(II), and cadmium(II) on Amberlite IR-120 synthetic sulfonated resin has been studied at different pH and temperatures by batch process. The effects of parameters such as amount of resin, resin contact time, pH, and temperature on the ion exchange separation have been investigated. For the determination of the adsorption behavior of the resin, the adsorption isotherms of metal ions have also been studied. The concentrations of metal ions have been measured by batch techniques and with AAS analysis. Adsorption analysis results obtained at various concentrations showed that the adsorption pattern on the resin followed Freundlich isotherms. Here we report the method that is applied for the sorption/separation of some toxic metals from their solutions.  相似文献   

5.
Journal of Thermal Analysis and Calorimetry - Hollow mesoporous silica (SiO2) was synthesized by the modified self-template method, and the morphology and structural properties of mesoporous silica...  相似文献   

6.
The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.  相似文献   

7.
Thermal decomposition of Bi(SCN)3, Cd(SCN)2, Pb(SCN)2 and Cu(SCN)2 has been studied. The thermal analysis curves and the diffraction patterns of the solid intermediate and final products of the pyrolysis are presented. The gaseous products of the decomposition (SO2 and CO2) were detected and quantitatively determined. Thermal, X-ray and chemical analyses have been used to establish the nature of the reactions occurring at each stage in the decomposition.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

8.
Summary Clean and rapid analytical separation of microgram quantities of Ge(IV), Sn(II), Pb(II) and Zn(II), Cd(II), Hg(II) from their mixed solution has been made possible by ascending thin-layer chromatography using the solvent systems: (a)Isobutyl alcohol: Conc. HCl: Et-Me ketone and (b) Isobutyl alcohol: CH3COOH. For the evaluation of different metal ions, the resulting delineated spots as viewed in U.V. light were scooped out with the help of micro-vacuum cleaner and the collected material transferred to the paper set on the ring oven. Separate rings were obtained for individual metal ions and the computation of results having been made by ring colorimetry, using PTC and other chromogenic reagents.
Bestimmung von Ge(IV), Sn(II), Pb(II) und Zn(II), Cd(II), Hg(II) durch Ring-Colorimetrie nach Trennung durch Dünnschicht-Chromatographie

Détermination de Ge(IV), Sn(II), Pb(II) et de Zn(II), Cd(II), Hg(II) par colorimétrie annulaire après séparation par chromatographie sur couche mince
  相似文献   

9.
Illite samples from Fithian, IL were purified and saturated with Na(+) ions. The acid-base surface chemistry of the Na-saturated illite was studied by potentiometric titration experiments with 0.1, 0.01, and 0.001 M NaNO(3) solutions as the background electrolyte. Results showed that the titration curves obtained at different ionic strengths did not intersect in the studied pH range. The adsorption of Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) onto illite was investigated as a function of pH and ionic strength by batch adsorption experiments. Two distinct mechanisms of metal adsorption were found from the experimental results: nonspecific ion-exchange reactions at lower pH values on the basal surfaces and 'frayed edges' and specific adsorption at higher pH values on the mineral edges. Ionic strength had a greater effect on the ion-exchange reactions. The binding constants for the five heavy metals onto illite were determined using the least-square fitting computer program FITEQL. Linear free energy relationships were found between the surface binding constants and the first hydrolysis constants of the metals.  相似文献   

10.
Solid-phase extraction (SPE) method for preconcentration and determination of Cd(II), Pb(II), Co(II), Ni(II), and Cu(II) aqueous samples by inductively coupled plasma optical emission spectrometry is described. The preconcentration of analytes is accomplished by retention of their chelates with 1.10-phenanthroline in aqueous solution on a solid phase containing carboxylic acid (COOH) bonded to silica gel in a column. The limits of detection values (defined as “3s” where “s” is standard deviation of the blank determination) are 3.6 μg/L for Cd(II), 17.5 μg/L for Pb(II), 3.1 μg/L for Co(II), 2.1 μg/L for Ni(II), and 4.4 μg/L for Cu(II) and corresponding limit of quantification (6s) values are 7.2, 35, 6.2, 4.2 and 8.8 μg/L, respectively. As a result, a simple method was elaborated for the group concentration and determination of the above mentioned metals in reference material and in samples of plant material. The article is published in the original.  相似文献   

11.
The analytical determination of Hg(II), Cu(II), Cd(II), As(III), Sb(III), Ti(IV) and U(VI) in the presence of Fe(III) and 1 M H2SO4 are investigated using the polarographic technique. The wave corresponding to the reduction of Fe(III) to Fe(II) was found to be completely suppressed by the addition of 1% pyrogallol. Thus, different mixtures of these elements, viz. Hg(II), Cu(II), Cd(II), As(III) and Fe(III)-mixture (A), Cu(II), Cd(II), Sb(III), As(III) and Fe(III)-mixture (B), and Cu(II), Cd(II), Ti(IV), U(VI) and Fe(III)-mixture (C), were quantitatively determined using 1% pyrogallol and 1 M H2SO4 as supporting electrolyte. The i1/c results give excellent correlations in each case, as indicated from the results of leastsquares regression analysis.  相似文献   

12.
In this paper, Potentiometric Stripping Analysis (PSA) was simultaneously used to determine the concentrations of trace metals (Zn, Cd, Pb and Cu) in human plasma. The metal ions were concentrated as their amalgams on the glassy carbon surface of a working electrode that was previously coated with a thin mercury film and then stripped by a suitable oxidant. The selection of the experimental conditions was made by using the experimental‐designed methodology. The optimum conditions of the method includes a 0.2 M HAc‐NaAc buffer mixture (pH 4.5) as supporting electrolyte, and an electrolysis potential of‐1220 mV. The limits of detection (LOD) were obtained 1 μg L?1 for Zn(II) and Pb(II), 0.5 μg L?1 for Cu(II) and 2 μg L?1 for Cd(II) in the studied medium. The good recoveries were obtained for the analysis in human plasma. The method was applied to blood samples, using the method of standard additions and the results were compared with Inductively Coupled Plasma‐Atomic Emission Spectrometry (ICP‐AES) as reference method. Furthermore, a simple digestion protocol of samples is investigated compared to the conventional digestion method.  相似文献   

13.
《Solid State Sciences》2012,14(2):202-210
Waste materials from industries such as food processing may act as cost effective and efficient biosorbents to remove toxic contaminants from wastewater. This study aimed to establish an optimized condition and closed loop application of processed orange peel for metals removal. A comparative study of the adsorption capacity of the chemically modified orange peel was performed against environmentally problematic metal ions, namely, Cd2+, Cu2+ and Pb2+, from aqueous solutions. Chemically modified orange peel (MOP) showed a significantly higher metal uptake capacity compared to original orange peel (OP). Fourier Transform Infrared (FTIR) Spectra of peel showed that the carboxylic group peak shifted from 1637 to 1644 cm−1 after Pb (II) ions binding, indicated the involvement of carboxyl groups in Pb(II) ions binding. The metals uptake by MOP was rapid and the equilibrium time was 30 min at constant temperature and pH. Sorption kinetics followed a second-order model. The mechanism of metal sorption by MOP gave good fits for Freundlich and Langmuir models. Desorption of metals and regeneration of the biosorbent was attained simultaneously by acid elution. Even after four cycles of adsorption-elution, the adsorption capacity was regained completely and adsorption efficiency of metal was maintained at around 90%.  相似文献   

14.
The biosorption data of Cd(II), Cr(III), and Cr(VI) by saltbush leaves biomass were fit on the Freundlich and Langmuir adsorption isotherms at 297 K. The Cd(II) and Cr(III) solutions were adjusted to pH 5.0 and the Cr(VI) solution was adjusted to pH 2.0. The correlation coefficient values indicated that the data fit better the Freundlich model. The maximal capacities (K(F)) were found to be 5.79 x 10(-2), 3.25 x 10(-2), and 1.14 x 10(-2) mol/g for Cr(III), Cd(II), and Cr(VI), respectively. Similar results were obtained using the Langmuir and the Dubinin-Radushkevick equations. Thermodynamic parameters calculated from the Khan and Singh equation and from the q(e) vs C(e) plot show that the equilibrium constants for the biosorption of the metals follow the same order of the maximal capacities. The negative Gibbs free energy values obtained for Cd(II) and Cr(III) indicated that these ions were biosorbed spontaneously. The mean free energy values calculated from the Dubinin-Radushkevick equation (10.78, 9.45, and 9.05 for Cr(III), Cr(VI), and Cd(II), respectively) suggest that the binding of Cd(II), Cr(III), and Cr(VI) by saltbush leaves biomass occurs through an ionic exchange mechanism.  相似文献   

15.
It was shown that Cr(VI), Ni(II), and Cu(II) can be simultaneously adsorbed on a solid phase consisting of two filled fibrous disks and then determined visually using organic reagents. One sorbent disk, a fibrous material filled with an AB-17 anion exchanger, was used to determine chromium by its reaction with 1,5-diphenylcarbazide. Another disk filled with an KU-2 cation exchanger was used for the simultaneous sorption of copper and nickel followed by the consecutive determination of nickel with dimethylglyoxime and copper with sodium diethyldithiocarbamate. The conditions were optimized for the determination of nickel in the presence of copper and of copper in the presence of nickel after decomposing its dimethylglyoxime complex with 1 M HCl. The detection limits were 0.02, 0.1, and 0.05 mg/L for Cr, Ni, and Cu, respectively. The time of analysis was no longer that 20 min.  相似文献   

16.
Adsorption of Cd (II), Cu (II), Ni (II), and Zn (II) from aqueous solutions on anaerobically digested sludge has been investigated. Experimental data has been fit to Langmuir, Freundlich, and Redlich-Peterson isotherms to obtain the characteristic parameters of each model. Based on the maximum adsorption capacity obtained from the Langmuir and the Redlich-Peterson isotherm the affinity of the studied metals for the sludge has been established as Cu (II)>Cd (II)>Zn (II)>Ni (II). Adsorption tests from multimetal systems confirm the affinity order obtained in the individual metal tests. The adsorption capacity for Cu (II) measured in individual tests is not reduced by the presence of the other above referred metals. Desorption of Zn (II) and Cd (II) previously bound to the sludge in front of Cu (II) and HCl solutions is also reported. Copyright 2000 Academic Press.  相似文献   

17.
The removal of heavy metals, such as Cu(II), Cd(II) and Cr(III) from aqueous solution was studied using Chorfa silt material (Mascara, Algeria). The main constituents of silt sediment are quartz, calcite and mixture of clays. The experimental data were described using Freundlich, Langmuir, Dubinin–Radushkevich (D–R) and Langmuir–Freundlich models. The adsorbed amounts of chromium and copper ions were very high (95% and 94% of the total concentration of the metal ions), whereas cadmium ion was adsorbed in smaller (55%) amounts. The Langmuir–Freundlich isotherm model was the best to describe the experimental data. The maximum sorption capacity was found to be 26.30, 11.76 and 0.35 mg/g for Cr3+, Cu2+ and Cd2+, respectively. The results of mean sorption energy, E (kJ/mol) calculated from D–R equation, confirmed that the adsorption of copper, chromium and cadmium on silt is physical in nature.  相似文献   

18.
Hydrotalcite-like compounds (layered double hydroxides, LDHs) containing varying amounts of Al(3+), Zr(4+), and Zn(2+) or Mg(2+) in the metal hydroxide layer have been synthesized and characterized by various physicochemical methods. The adsorption behavior of uncalcined (as-synthesized) and calcined LDHs have been investigated for Cr(2)O(7)(2-) and SeO(3)(2-). The mixed oxides, obtained on calcination at 450 degrees C, exhibit high adsorption capacities for Cr(2)O(7)(2-) (1.6-2.7 meq/g) and SeO(3)(2-) (1.1-1.5 meq/g), where adsorption occurs through rehydration. Substitution of Zr(4+) in the LDHs, for either M(2+) or Al(3+) ions, increases the adsorption capacity up to 20%, thus providing an alternative way to enhance the adsorption capacity of this type of material. The high adsorption capacity of these materials could be successfully used for removal of undesirable anions from water and also for synthesis of intercalated materials with tailored acidobasicity.  相似文献   

19.
In this work, we study the elimination of three bivalent metal ions (Cd2+, Cu2+, and Pb2+) by adsorption onto natural illitic clay (AM) collected from Marrakech region in Morocco. The characterization of the adsorbent was carried out by X-ray fluorescence, Fourier transform infrared spectroscopy and X-ray diffraction. The influence of physicochemical parameters on the clay adsorption capacity for ions Cd2+, Cu2+, and Pb2+, namely the adsorbent dose, the contact time, the initial pH imposed on the aqueous solution, the initial concentration of the metal solution and the temperature, was studied. The adsorption process is evaluated by different kinetic models such as the pseudo-first-order, pseudo-second-order, and Elovich. The adsorption mechanism was determined by the use of adsorption isotherms such as Langmuir, Freundlich, and Temkin models. Experiments have shown that heavy metals adsorption kinetics onto clay follows the same order, the pseudo-second order. The isotherms of adsorption of metal cations by AM clay are satisfactorily described by the Langmuir model and the maximum adsorption capacities obtained from the natural clay, using the Langmuir isotherm model equation, are 5.25, 13.41, and 15.90 mg/g, respectively for Cd(II), Cu(II), and Pb(II) ions. Adsorption of heavy metals on clay is a spontaneous and endothermic process characterized by a disorder of the medium. The values of ΔH are greater than 40 kJ/mol, which means that the interactions between clay and heavy metals are chemical in nature.  相似文献   

20.
Ammonium[N(o-chlorophenyl)dithiocarbamate], NH4(OCD), ammonium [N(m-chlorophenyl)dithiocarbamate], NH4(MCD) and ammonium [N(p-chlorophenyl)dithiocarbamate], NH4(PCD) and their complexes with Cu(II), Zn(II), Cd(II) and Sn(II) have been synthesised. These complexes have been characterised on the basis of chemical analyses, molecular weight determinations, conductance measurements, electronic and IR spectral studies. Thermal behaviour of the compounds has been studied with the aid of TG and DTA techniques in static air atmosphere. Heats of reaction for different decomposition steps have been calculated from the DTA curves. The end products obtained after thermal decomposition of the complexes were identified by elemental analyses and IR spectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号